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Abstract—Graph coloring has been broadly used to dis-
cover concurrency in parallel computing, where vertices with
the same color represent subtasks that can be processed
simultaneously. To speedup graph coloring for large scale
datasets, parallel algorithms have been proposed to leverage
the massive hardware resources on modern multicore CPUs or
GPGPUs. Existing GPU implementations either have limited
performance or yield unsatisfactory coloring quality (too many
colors assigned). We present a high performance parallel
graph coloring implementation on GPGPUs with good coloring
quality. Our approach employs the speculative greedy algorithm
which usually yields better quality than the method based on
maximal independent set. In order to achieve high performance
on GPGPUs, we adapt the algorithm to improve work efficiency
and reduce overhead, and incorporate several optimization
techniques which reduce memory access latency and atomic op-
eration overhead. Our method is evaluated with both synthetic
and real-world graphs on the NVIDIA GPU. Experimental
results show that our proposed implementations outperform
the sequential implementation (3.0× speedup) and the existing
GPU implementation from the NVIDIA CUSPARSE library
(1.5× speedup), while yielding good coloring quality close to
the sequential implementation.
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I. INTRODUCTION

The problem of graph coloring is to assign colors to all the
vertices of a graph such that no neighboring vertices have the
same color. Graph coloring is a fundamental graph algorithm
that has been utilized in many applications [1]–[5], and
is also employed by scientific and engineering computing
to discover concurrency, e.g. high performance conjugate
gradient (HPCG) [6] and incomplete-LU factorization [7],
where coloring is used to identify subtasks that can be car-
ried out or data elements that can be updated simultaneously.

To deal with large scale graphs, parallel graph coloring
algorithms [8], [9] have been proposed to leverage the
massive hardware resources on modern multicore CPUs or
GPUs. Existing parallel implementations of graph coloring
can be classified into two categories: 1) speculative greedy
(SGR) scheme based [10] and 2) maximal independent set
(MIS) based [11]. General-purpose graphics processing units
(GPGPUs) have been widely used for high performance
computing (HPC) during the last decade, owing to their high
throughput and energy-efficiency. In this paper, we explore
the parallel graph coloring on GPGPUs using CUDA [12]
programming model. There are existing GPU implementa-
tions of both catigories, but with different algorithms, they

exhibit different characteristics of performance and coloring
quality. MIS implementations [7] are usually fast since
multiple threads can find MIS in parallel independently,
but they yield too many colors. On the other hand, SGR
implementations [13] generally use less colors than MIS
based implementations, but without careful optimizations,
they spend much more time to complete coloring.

To overcome the limitations of existing approaches, we
propose a high performance GPU implementation of graph
coloring which can produce high-quality coloring. Our
method is built based on the speculative greedy scheme, and
optimized specifically for the GPGPU architecture. We pro-
vide both topology-driven and data-driven implementations,
and make tradeoffs on task mapping and data movement to
take advantage of GPU’s compute capability. Meanwhile, we
leverage the cache hierarchy in GPUs to reduce the memory
access latency. The main contributions of this paper are:

1) We present a simple yet efficient parallel graph coloring
algorithm for GPGPUs based on the greedy scheme. The
algorithm is carefully designed to better leverage the bulk-
synchronous model of GPUs than existing approaches.

2) We employ optimization techniques specifically for
the GPU architecture to take advantage of the massive
computation resources and memory hierarchies of GPUs.

3) We implement the proposed algorithm and optimiza-
tions using CUDA, and evaluate it on the NVIDIA GPU
with several synthetic as well as real-world graphs. Experi-
mental results show that our implementation achieves high
performance with good coloring quality.

The rest of the paper is organized as follows: the existing
sequential and parallel algorithms as well as the state-of-the-
art GPU implementations are introduced in Section II. Our
proposed schemes are presented in Section III. Section IV
presents the experimental results, and Section V concludes.

II. BACKGROUND AND MOTIVATION

Graph coloring refers to the assignment of colors to
elements (vertices or edges) of a graph subject to certain
constraints. In this paper, we focus on vertex coloring which
assigns colors to vertices so that no two neighboring vertices
(vertices connected by an edge) are assigned the same color.
There are several known applications of graph coloring,
such as time-tabling and scheduling [1]–[3], register al-
location [4], high-dimensional nearest-neighbor search [5],



Algorithm 1 Sequential Greedy Algorithm [10]
1: procedure GREEDY(G(V,E))
2: for each vertex v ∈ V do
3: for each vertex w ∈ adj(v) do
4: colorMask[color[w]]← v
5: end for
6: c← min {i > 0 : colorMask[i] 6= v}
7: color[v]← c
8: end for
9: end procedure

sparse-matrix computation [6], [7] and assigning frequencies
to wireless access points [14].

Graph coloring is a well explored problem, and various
approaches have been taken to solve it. This is a NP-
complete problem to solve optimally, and is known to be NP-
hard even sloved approximately [15]. In this paper, we focus
on approximate graph coloring which yields near-optimal
coloring quality. Many heuristics have been developed for
approximate solutions, including First Fit (FF), Largest De-
gree First (LF), etc. These heuristics make trade-off between
minimizing the number of colors and execution time, but
generally the faster algorithms have poor coloring quality
while the slower ones tend to yield fewer colors. In the
following, we introduce some existing sequential algorithm
as well as parallel ones.

A. Sequential Graph Coloring

A sequential algorithm [10], [16] that performs approx-
imate graph coloring with the greedy scheme is shown in
Algorithm 1. It is not optimal, but it is fast and easy to
implement. In all the algorithms specified in this paper, we
use similar data structures to those introduced in [10]. adj(v)
denotes the set of vertices adjacent to the vertex v, color is
a vertex-indexed array that stores the color of each vertex,
and colorMask is a color-indexed mask array used to mark
the colors that are impermissible to a particular vertex v. At
the beginning of the procedure, the array color is initialized
with each entry color[w] set to zero to indicate that vertex
w is not yet colored, and each entry of the array colorMask
is initialized with some value a /∈ V .

When processing the vertex v, the algorithm scans all
its neighbors (line 3), and their colors are forbidden to be
assigned to the vertex v (line 4). By the end of the inner for-
loop, all of the colors that are impermissible to the vertex v
are recorded in the array colorMask. It is then scanned from
left to right in search of the lowest positive index i at which
a value different from the current vertex v is encountered;
this index corresponds to the smallest permissible color c
to the vertex v (line 6). The color c is then assigned to the
vertex v (line 7). Note that since the colors impermissible
to the vertex v are marked in the array colorMask using v
(instead of a boolean flag) as a label, the array colorMask

Algorithm 2 Parallel GM Algorithm [10]
1: procedure GM(G(V,E))
2: W ← V . Initialize the worklist
3: while W 6= ∅ do
4: for each vertex v ∈W in parallel do
5: for each vertex w ∈ adj(v) do
6: colorMask[color[w]]← v
7: end for
8: c← min {i > 0 : colorMask[i] 6= v}
9: color[v]← c

10: end for
11: R← ∅ . Initialize the remaining worklist
12: for each vertex v ∈ V in parallel do
13: for each vertex w ∈ adj(v) do
14: if color[v] = color[w] and v < w then
15: R← R ∪ {v}
16: end if
17: end for
18: end for
19: W ← R . Update the worklist
20: end while
21: end procedure

does not need to be re-initialized in every iteration of the
loop over the vertex set V .

B. Parallel Graph Coloring

When applied to large scale problems, such as sparse-
matrix computation [6], [7] and chromatic scheduling [3],
parallel graph coloring is required to meet the performance
requirement. Because of its sequential nature, the greedy
scheme is challenging to parallelize. Basically, two classes
of approaches have been investigated in the past to tackle
this issue.

Gebremedhin and Manne (GM) [9] proposed a specula-
tion scheme to deal with the inherent sequentiality of the
greedy scheme. The main idea is to color as many vertices as
possible in parallel, tentatively tolerating potential conflicts,
and detect and resolve conflicts afterwards. Algorithm 2
shows the details of the GM algorithm. It can be divided
into two parts: the first part (from line 4 to line 10) is
the same as the sequential algorithm but done in parallel.
The second part (from line 12 to line 18) does the conflict
detection (line 14) and puts the conflicting vertices into
the remaining worklist (line 15). Based on this specula-
tive greedy (SGR) algorithm, Çatalyürek et al. developed
OpenMP implementations for the multi-core and massively
multithreaded architectures [10]. Rokos et al. improved
Çatalyürek’s algorithm and implemented it on the Intel R©
Xeon Phi coprocessor [17].

The other approach relies on iteratively finding a max-
imal independent set (MIS) of vertices in a progressively
shrinking graph and coloring the vertices in the independent



Algorithm 3 Parallel JP Algorithm [7]
1: procedure JP(G(V,E))
2: W ← V, c← 1
3: while W 6= ∅ do
4: S ← ∅ . Initialize the independent set
5: for each vertex v ∈W in parallel do
6: r(vi)← random()
7: end for
8: for each vertex v ∈W in parallel do
9: flag ← true

10: for each vertex w ∈ adj(v) do
11: if r(v) <= r(w) then
12: flag ← false
13: end if
14: end for
15: if flag = true then
16: S ← S ∪ {v}
17: end if
18: end for
19: for each vertex v ∈ S in parallel do
20: color[v]← c . Color an independent set
21: end for
22: W ←W − S, c← c+ 1
23: end while
24: end procedure

set in parallel. In many of the methods in this class, the
independent set is computed in parallel using some variant
of Luby’s algorithm [11]. An example is the work of Jones
and Plassmann (JP) [18]. Algorithm 3 shows the details of
the JP algorithm. Gjertsen et al. [19] introduced an advanced
parallel heuristic, PLF, that consistently generates better
colorings than the JP heuristic with slight overhead. Two
new parallel color-balancing heuristics, PDR(k) and PLF(k)
are also introduced. Hasenplaugh et al. [20] futher improve
the ordering heuristics based on the JP algorithm.

C. GPU Implementations

Grosset et al. [13] implement the GM algorithm using
CUDA on GPUs. They use a 3-step graph coloring frame-
work: 1) Graph partitioning which partitions the graph
into subgraphs and identifies boundary vertices, 2) graph
coloring & conflicts detection which colors the graph using
the specified heuristic, e.g. FF, and identifies color conflicts,
and 3) sequential conflicts resolution which goes back to
CPU and resolves the conflicts. Note that step 2 is performed
multiple times on GPU to reduce the number of conflicts
before going back to CPU. Although this 3-step GM
algorithm can get as few color as (if not fewer than) the
best sequential graph coloring algorithm, its performance is
much worse than the sequential graph coloring, meaning the
GPU computation horsepower is not leveraged very well.
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Figure 1. Comparison between two existing GPU graph coloring imple-
mentations: 3-step GM and csrcolor. (a) runtime speedup normalized
to the sequential implementation (the more the better); (b) the number of
colors assigned (the less the better).

The CUSPARSE [21] library offered by NVIDIA includes
csrcolor [7] routine which does graph coloring on a given
graph in CSR format [22]. The algorithm of csrcolor
is derived from the JP algorithm, but uses the multi-hash
method to find maximal independent sets. Basically, sev-
eral hash functions (instead of random number generators)
are selected, and used to generate hash values for each
vertex with the vertex number as the input of the hash
functions. Given the generated hash values, local maximum
and minimum values can be found, and distinct (maximal)
independent sets are generated for each of the hash values.
Assume N hash values are associated with each vertex,
and used to create different pairs of (maximal) independent
sets, this multi-hash method can generate 2N (maximal)
independent sets at once. As reported [7], the csrcolor
implementation runs pretty fast on modern NVIDIA GPUs.
However, it usually produces several times more colors
than the sequential algorithm, which is not satisfactory for
many applications. For example, when applied to exploit
concurrency in parallel computing, more colors means less
parallelism, because tasks (vertices) with the same color can
be processed concurrently.

We evaluate the two existing GPU implementations of
graph coloring on the NVIDIA K20c GPU. Fig. 1 shows the
performance and coloring quality of both implementations.
As illustrated, 3-step GM yields much better coloring
quality than csrcolor, but its performance becomes even
worse than the sequential implementation, meaning this
GPU implementation dose not exploit GPU hardware very
well. On the other hand, csrcolor runs much faster
than 3-step GM, and gains a certain degree of speedup
over the sequential implementation. However, this good
performance comes at the expense of much worse coloring
quality: it yields several times more colors than the se-
quential implementation and 3-step GM. The limitations
of csrcolor and 3-step GM motivate us to design a



Algorithm 4 Topology-driven Parallel Graph Coloring
1: procedure TOPO-GC(G(V,E))
2: do
3: changed← false
4: for each vertex v ∈ V in parallel do
5: if colored[v] = false then
6: for each vertex w ∈ adj(v) do
7: colorMask[color[w]]← v
8: end for
9: c← min {i > 0 : colorMask[i] 6= v}

10: color[v]← c
11: colored[v]← true
12: changed← true
13: end if
14: end for
15: for each vertex v ∈ V in parallel do
16: for each vertex w ∈ adj(v) do
17: if color[v] = color[w] and v < w then
18: colored[v]← flase
19: end if
20: end for
21: end for
22: while changed = true
23: end procedure

better implemention of parallel graph coloring for GPGPUs
to achieve both good performance and coloring quality.

III. DESIGN

Graph algorithms are typical irregular algorithms [23] that
are considered to be difficult to parallelize on GPUs. How-
ever, recent works [24]–[28] in this area, show that GPUs are
capable to substantially accelerate graph algorithms if they
are carefully designed and optimized for the GPU architec-
ture. In this section, we propose our design based on existing
knowledge and previously proposed optimization strategies
for other graph algorithms, and adapt the techniques for
solving the graph coloring problem.

A. Design Overview

Nasre et al. [29] introduced the concept of topology-
driven and data-driven imlementations of irregular appli-
cations on GPUs. For graph algorithms, the topology-driven
implementation simply maps each vertex to a thread, and
in each iteration, the thread stays idle or is responsible to
process the vertex depending on whether the corresponding
vertex has been processed or not. The topology-driven im-
plementation is straightforward, and since GPUs are suitable
for accelerating data-parallel applications, it is easy to map
onto the GPU hardware and possibly get speedup. By con-
trast, the data-driven implementation maintains a worklist
which holds the remaining vertices to be processed. In each
iteration, threads are created in proportion to the size of

Algorithm 5 Data-driven Parallel Graph Coloring
1: procedure DATA-GC(G(V,E))
2: Win ← V . Initialize the in worklist
3: while Win 6= ∅ do
4: for each vertex v ∈Win in parallel do
5: for each vertex w ∈ adj(v) do
6: colorMask[color[w]]← v
7: end for
8: c← min {i > 0 : colorMask[i] 6= v}
9: color[v]← c

10: end for
11: Wout ← ∅ . Initialize the out worklist
12: for each vertex v ∈ V in parallel do
13: for each vertex w ∈ adj(v) do
14: if color[v] = color[w] and v < w then
15: Wout ←Wout ∪ {v}
16: end if
17: end for
18: end for
19: swap(Win,Wout) . Swap the worklists
20: end while
21: end procedure

the worklist (i.e. the number of vertices in the worklist).
Each thread is responsible for processing a certain amount
of vertices in the worklist, and no thread is idle. Therefore,
the data-driven implementation is generally more work-
efficient than the topology-driven one, but it needs extra
overhead to maintain the worklist. Note that the data-driven
implementation still suffers from load imbalance problem,
since vertices may have different amount of edges to be
processed by the corresponding threads.

We implement our graph coloring in these two fashions,
and then compare their performance and coloring quality.
In the previous evaluation we find that speculative greedy
(i.e. GM) algorithm inherently yields better coloring quality
than the maximal independent set (i.e. JP) method. Thus
we choose to use the speculative greedy scheme and design
our algorithm skeleton on top of it. Compared to the
3-step GM algorithm, our proposed GPU implementation
maps the entire coloring work onto the GPU, consequently
removing the data transfer between the CPU and the GPU.
The rationale behind this change of data movement is, as
throughput-oriented processors, GPUs are good at exploiting
data level parallelism, so recomputing the conflicted work
rather than serializing it onto the CPU would be more
straightforward and efficient. To achieve performance close
to the MIS method (e.g. csrcolor), we employ GPU
specific optimizations to take advantage of the hardware.

B. Algorithmic Adaptation

Algorithm 4 shows the topology-driven graph coloring
algorithm. In this topology-driven algorithm, a flag changed



is used to indicate whether all the vertices are colored or
not. It is cleared at the beginning of each iteration, and
set by one or more threads if any vertex is colored. Once
all the vertices are colored, the flag remains false and the
algorithm finally terminates. The vertex coloring as well as
the conflict detection and resolve are similar to the GM
algorithm. Algorithm 5 shows the data-driven graph coloring
algorithm. It is almost the same as the GM algorithm except
that Algorithm 5 uses double buffering [29] to avoid copying
the worklist. The two worklists Win and Wout are referenced
by pointers, and they are swapped at the end of each
iteration. Since they are operated using pointers instead of
data values, no copy operation is required between the two
worklists.

C. Optimization Techniques

We use the well-known compressed sparse row
(CSR) [22] sparse matrix format to store the graph in
memory consisting of two arrays. Fig. 2 provides a simple
example. The column-indices array C is formed from the
set of the adjacency lists concatenated into a single array of
m (m is the number of edges) integers. The row-offsets R
array contains n+ 1 (n is the number of vertices) integers,
and entry R[i] is the index in C of the adjacency list of
the vertex vi. We store graphs in the order they are defined
and do not perform any preprocessing in order to improve
locality or load balance.

Memory irregularity may lead to poor GPU system per-
formance [30]. As illustrated in Fig. 3, the CUDA kernels
are highly memory latency bound. Since graph coloring uses
CSR format to store the indices and data in memory, this
indirect memory access pattern leads to statically unpre-
dictable memory access behavior which is dependent on the
input dataset. To mitigate the effect of irregular memory
access, efforts should be made to reduce as many off-chip
memory accesses as possible. Therefore, the optimization
should focus on keeping the main data structures (i.e. the C
array, the R array and the color array) on chip.

The GPU memory hierarchy consists of register file, L1
memories (scratchpad, L1 cache, and read-only data cache),
shared L2 cache, and off-chip GDDR DRAM [31]. The
L1 memory is private per-SM and shared by sibling warps.
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Figure 2. An example of the compressed sparse row (CSR) format. For
this graph, at least three colors (red, green, blue) are needed.
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Figure 3. Graph coloring is highly memory latency bound. (a) Achieved
compute throughput and memory bandwidth are both below 60% of peak,
indicating the kernel is most likely limited by the latency of memory
operations. (b) The break-down of instruction stalls reasons averaged over
the entire execution of the kernel, among which memory dependency
dominates. (Instruction stall reasons indicate the condition that prevents
warps from executing on any given cycle.)
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Scratchpad memory (shared memory in CUDA terminology)
is programmer visible and can be used for explicit intra
thread block communication. The same on-chip memory
(64KB in total in Kepler GPUs) is used for both L1 data
cache and scratchpad. Note that L1 caching in Kepler GPUs
is reserved only for local memory accesses, such as register
spill and stack data, which is different from that in Fermi
GPUs. Global loads are cached in L2 only (or in the
read-only data cache). Each SM also has a read-only data
cache of 48 KB to speed up reads from device memory.
It accesses this cache either directly or via a texture unit.
When accessed via the texture unit, the read-only data cache
is also referred to as texture cache. The L2 cache works
as the central point of coherency, and is shared across all
threads of the entire kernel. It is partitioned into multiple
banks that are connected to each memory channel. Atomic
operations are performed at each memory partition by the
Atomic Operation Unit (AOU).

Read-only Data Caching. In CUDA devices of compute
capability 3.5 and higher, data that is read-only for the
entire lifetime of the kernel can also be cached in the read-
only data (unified L1/texture) cache by reading it using the
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Figure 5. Example of prefix sum for computing scatter offsets for updating
the remaining worklist. Input order is preserved. The figure is duplicated
from [24].

intrinsic __ldg() [12]. Fig. 4 illustrates the difference
between __ld() and __ldg(). We propose to use the
read-only data cache to hold read-only data, i.e. the C array
and the R array. __ld() is the normal load operation with
which the data walks through DRAM, L2 cache, L1 cache
to the register file (as mentioned data in global memory
is actually not cached by the L1 cache). __ldg() is the
read-only data cache load operation with which the data
walks through DRAM, L2 cache, L1 read-only cache to the
register file. In this case, more read-only data can be cached
in the L1 read-only cache whose access latency is around 30
cycles which is much shorter than the DRAM access latency
(about 300 cycles). Therefore, __ldg() can improve the
performance because of reduced DRAM accesses.

Atomic Operation Reduction. For the data-driven im-
plementation, another overhead comes from the atomic
operations. In Algorithm 5, since the out worklist is a
shared data structure, pushing elements into the worklist
(line 15) requires atomic operations to ensure correctness.
Although GPU architects have paid a lot of effort to optimize
atomic operation, serialization from atomic synchronization
is still expensive for GPUs [24], because generally mutual
exclusion does not scale to thousands of threads, and the
fine-grained dynamic serialization within the SIMD width
is much more expensive than between overlapped SMT
threads on CPUs. Thus Merrill et al. [24] proposed to use
software prefix sum for updating the shared worklist in the
data-driven implementation. Parallel prefix sum [32], [33] is
a bulk-synchronous algorithmic primitive that can be used
to compute scatter offsets for concurrent threads to place
dynamic data within shared data structures such as global
queues.

Fortunately, efficient GPU prefix sums [34] have been
proposed, and the CUB [35] library has already provided
standard routines for CUDA users to invoke. This allows us
to easily reorganize sparse and uneven workloads into dense
and uniform ones. Given a list of allocation requirements for
each thread, prefix sum computes the offsets for where each
thread should start writing its output elements. Fig. 5 from
[24] illustrates updating the worklist using prefix sum. In this

example, the thread t0 wants to produce two items (e.g. two
vertices), t1 one item, t2 zero items, and so on. The prefix
sum computes the scatter offset needed by each thread to
write its output element. Thread t0 writes its items at offset
zero, t1 at offset two, t3 at offset three, etc. In the context of
parallel graph coloring, parallel threads use prefix sum when
assembling confilicting vertices into the remaining worklist.
In this case, local atomic operations are not necessary, and
the globally shared worklist is only atomically updated once
for each thread block in each iteration.

IV. EVALUATION

We use the R-MAT [36] graph generator to create syn-
thetic graphs. The R-MAT algorithm determines the distri-
bution by using four non-negative parameters (a; b; c; d)
whose sum equals one. We generated two graphs (RMAT-ER
and RMAT-G) with 1M vertices size but varying structures
by using the following set of parameters: (0:25; 0:25;
0:25; 0:25); (0:45; 0:15; 0:15; 0:25). We also pick some
real-world graphs with more than 1M vertices from the
University of Florida Sparse Matrix Collection [37]. Smaller
datasets are excluded from the experiment since we focus
on large-scale problems which are more common in real-
world applications. The 2 symmetric positive definite (s.p.d.)
and 4 nonsymmetric matrices with the respective number
of vertices (i.e. rows) and edges (non-zero elements) are
grouped and shown according to their increasing order in
Table I. The graphs vary widely in degree distribution of
the vertices and density of local subgraphs, and they are
from different application domains.

We compare seven schemes including (1) the sequential
implementation [13], (2) 3-step GM [13], (3) the basic
topology-driven implementation (T-base), (4) T-base with
ldg (T-ldg), (5) the basic data-driven implementation with
reduced atomic operations (D-base), (6) D-base with ldg
(D-ldg) and (7) csrcolor [7]. Among them, (3)∼(6) are
our proposed implementations. We conduct the experiments
on NVIDIA K20c GPU with CUDA Toolkit 7.0 release.
The sequential implementation is executed on Intel Xeon
E5 2670 2.60 GHz CPU. All the benchmarks are executed
10 times and we collect the average execution time to
avoid system noise. The timing is only performed on the
computation part of each program, and the I/O part is
excluded from the evaluation for all the implementations.

Fig. 6 shows the number of colors needed by different
implementations for each graph. It is not surprising that the
first six schemes need similar amount of colors, since they
are all based on the speculative greedy scheme. The slight
difference among the four schemes may result from the
different orderings that are caused by different thread map-
ping stratigies and so on. csrcolor, however, needs much
(4.9×∼23×) more colors than the sequential algorithm,
making this MIS based scheme unattractive or even unap-
plicable in many scenarios. This substantial difference of



Graph No. vertices No. edges Min. deg. Max. deg. Avg. deg. Variance s.p.d Application
rmat-er 1048576 20971268 2 59 20.00 23.37 no Synthetic
rmat-g 1048576 20964268 0 899 20.00 472.81 no Synthetic
thermal2 1228045 8580313 1 11 6.99 0.66 yes Thermal Simulation
atmosmodd 1270432 8814880 4 7 6.94 0.06 no Atmospheric Model
Hamrle3 1447360 11028464 4 15 7.62 7.21 no Circuit Simulation

G3_circuit 1585478 7660826 2 6 4.83 0.41 yes Circuit Simulation

Table I
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Figure 6. Comparing the number of colors among different schemes.

coloring quality between csrcolor and the other schemes
stems from the different processing methods of SGR scheme
and MIS scheme. SGR scheme uses essentially the same
method as the sequential greedy scheme but optimistically
does coloring in parallel with later conflict detection and
resolve, while MIS scheme tries to find independent sets
iteratively, which does not cause any conflict, but for per-
formance concern, the methods used to find independent sets
should be simple enough and thus generate solutions that are
far away from the optimal.

Fig. 7 illustrates the execution time speedup over the
sequential implementation. As mentioned before, 3-step
GM gets unacceptable performance: it is much slower than
the sequential implemention (0.66× slowdown on average).
Our proposed implementations, although based on the same
speculative greedy scheme as 3-step GM, achieve signif-
icant speedup over the sequential implemention. Moreover,
the topology-driven implementations get the performance
close to csrcolor, while the data-driven ones are even
1.5× faster than csrcolor. For some benchmarks like
Hamrle3, our implementions even significantly outperform
csrcolor. This performance boost comes from the refine-
ment of the algorithm structure as well as the optimizations
specific to the GPU architecture. As illustrated, with the
changes of task mapping and data movement in the algo-
rithm, we boost the performance with an average speedup
of 2× and 3× for the topology-driven and data-driven
implementations respectively. Furthermore, __ldg() can
bring a certain degree of speedup for some benchmarks
such as thermal2 and Hamrle3, although on average
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Figure 7. Runtime speedup normalized to the sequential algorithm.

its impact on performance is not very distinct. Another
interesting observation is that the data-driven implementa-
tions perform much better than the topology-driven ones
for thermal2, atmosmodd and G3_circuit, since the
data-driven implementations are more work efficient and
improve the utilization of the SIMT hadware.

We also notice that for G3_circuit which has the
most vertices and is the sparsest (with average degree of
4.83) among the selected benchmarks, our proposed im-
plementations do not perform very well, while csrcolor
still get some speedup over the sequential implementation.
This implies that our approach might be limited by the
scale and/or sparsity of the given graph. This is because
the sparser the graph is, the less temporal locality it has,
and with very large scale the kernel becomes extremly
memory latency bound, which could not be mitigated by the
optimizations that we employ. On the contrary, csrcolor
is only slightly affected by these features, possibly due to
its better memory access behavior (the color array is not
frequently accessed). In this extreme case, csrcolor is
relatively more efficient, and this limitation of our approach
is left to be solved for our future work.

To find out the influence of the thread block size on
performance, we conduct the experiment with varying thread
block sizes. Fig. 8 shows that the thread block size does
have siginificant effect on performance. Generally, with
small thread block sizes, e.g. 32-thread, there are few warps
running simultaneously on each stream multiprocessor (SM),
and thus the memory access latency can not be hidden
very well by warp interleaving. For graph coloring which is
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Figure 8. Performance with different thread block size.

highly latency bound, the performance would be extremely
limited if the memory access latency is not carefully dealt
with. However, larger thread block size doesn’t always mean
better performance. As shown in the figure, in most cases
the performance peaks at 128-thread or 256-thread block
size, but in some cases the thread block size 32 leads to
best performance. This indicates that further optimization is
required to improve parallelism. Note that thread block sizes
larger than 256 usually can not get optimal performance
due to resource oversaturation. Since 128-thread block size
leads to best average performance, and does not cause
significant performance loss in all cases, we choose to use
this configuration as the default.

V. CONCLUSION

Graph coloring is an important graph algorithm that has
been applied in many application areas. To process large
scale graphs, parallel graph coloring has been intensively
studied in the past. GPGPUs have been broadly utilized
to speed up compute intensive kernels in high performnce
computing (HPC) applications in the past decade. In this
paper, we explore the parallel graph coloring implementation
on GPGPUs. Existing implementations either achieve lim-
ited performance or yield unsatisfatory coloring quality. We
present a high performance graph coloring implementation
for GPGPUs with good coloring quality. Our method is

derived from the speculative greedy algorithm, but improved
with GPU specific optimizations. Experimental results on
the NVIDIA K20c GPU show that our implementation
outperforms existing GM or JP implementations on GPUs
in terms of performance and coloring quality.
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