
Adaptive Cache Management for Energy-efficient GPU Computing

Xuhao Chen∗‡†, Li-Wen Chang†, Christopher I. Rodrigues†, Jie Lv†, Zhiying Wang∗‡ and Wen-Mei Hwu†

∗State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China
‡School of Computer, National University of Defense Technology, Changsha, China

†Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
{cxh,lchang20,cirodrig,jielv1}@illinois.edu, zywang@nudt.edu.cn, w-hwu@illinois.edu

Abstract—With the SIMT execution model, GPUs can hide
memory latency through massive multithreading for many
applications that have regular memory access patterns. To
support applications with irregular memory access patterns,
cache hierarchies have been introduced to GPU architectures to
capture temporal and spatial locality and mitigate the effect of
irregular accesses. However, GPU caches exhibit poor efficiency
due to the mismatch of the throughput-oriented execution
model and its cache hierarchy design, which limits system
performance and energy-efficiency.

The massive amount of memory requests generated by GPUs
cause cache contention and resource congestion. Existing CPU
cache management policies that are designed for multicore
systems, can be suboptimal when directly applied to GPU
caches. We propose a specialized cache management policy for
GPGPUs. The cache hierarchy is protected from contention
by the bypass policy based on reuse distance. Contention and
resource congestion are detected at runtime. To avoid over-
saturating on-chip resources, the bypass policy is coordinated
with warp throttling to dynamically control the active number
of warps. We also propose a simple predictor to dynamically
estimate the optimal number of active warps that can take
full advantage of the cache space and on-chip resources.
Experimental results show that cache efficiency is significantly
improved and on-chip resources are better utilized for cache-
sensitive benchmarks. This results in a harmonic mean IPC
improvement of 74% and 17% (maximum 661% and 44% IPC
improvement), compared to the baseline GPU architecture and
optimal static warp throttling, respectively.

Keywords-GPGPU; cache management; bypass; warp throt-
tling

I. INTRODUCTION

Energy-efficiency has become a critical design require-
ment as the semiconductor industry moves from multicore
to manycore processors. Heterogeneous architectures have
been proposed to improve energy-efficiency, because dif-
ferent types of processing engines can be specialized for
different types of computation patterns. For example, using
CUDA [36] or OpenCL [24] for general-purpose computing
on graphics processing units (GPGPUs) has become perva-
sive in the high performance computing community, due to
its improved energy-efficiency over conventional multicore
CPUs when dealing with data-parallel kernels. Manufactur-
ers are incorporating hardware and software features into
these throughput-oriented accelerators to better support un-

structured applications with various memory access patterns.
Caches have been included in GPUs to leverage on-chip
data reuse, and can provide significant speedup for irregular
applications written in a straightforward manner. However,
current GPU cache design and its management schemes
are inefficient when running memory intensive applications,
which hampers system performance and energy-efficiency.

Typical CPU cache architecture is optimized for mem-
ory latency, which does not necessarily benefit throughput-
oriented processors like GPUs, because massive multithread-
ing makes cache locality difficult to capture [18], [10], [38].
Like CPU caches, GPU caches performance is hampered
by thrashing, particularly inter-warp contention [39], [19],
which is much more common in GPUs due to massive
multithreading. GPUs usually have hundreds or thousands
of threads running simultaneously. Thus, they exhibit much
smaller cache capacity per thread and much shorter cache
line lifetimes than CPUs, with many cache lines being
replaced before they are reused. Inter-warp contention occurs
among warps that are scheduled to the same SIMT core.
It leads to poor temporal locality and thereby degrades
performance. Since the application working set is usually
much larger than the cache size, advanced replacement
policies cannot solve the contention problem in GPUs [39].

Cache bypassing [11] has been proposed in CPUs as
a thrashing-resistant technique to protect cache lines from
early eviction. It selectively bypasses some memory requests
to save cache space for other requests and thereby alleviates
contention. When applied to GPUs, pure cache bypass
policies [11] designed for last level caches (LLCs) in CPUs
may not achieve the expected improvement. This is because
the massive amount of miss (including bypass) requests may
lead to on-chip resource (either MSHR or on-chip network)
congestion and thus limit the performance benefit [19].

Thread throttling techniques [43], [9] can effectively
alleviate resource congestion in CPUs. Cache-conscious
wavefront scheduling (CCWS) [39] leverages thread/warp
throttling to alleviate inter-warp contention and improve
the L1 cache hit rate in GPUs. Two schemes have been
proposed: static wavefront limiting (SWL) using statically
determined maximum active warps (MAW) on each warp
scheduler, and dynamaic CCWS that leverages run-time in-

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0 4 8 12 16 20 24

N
o
rm

a
liz

e
d
 I
P
C

Maximum Active Warps (MAW)

SWL
SWL+bypass

Figure 1. BFS performance of SWL with bypass-disabled (SWL) and
SWL with bypass-enabled (SWL+bypass), simulated on a Fermi-like GPU
architecture (Table II), and all normalized to SWL-24 (static warp limiting
with MAW of 24). The bypass policy used here is the state-of-the-art CPU
bypass policy [11] that is ported by us to GPUs (described in Section IV).

formation to estimate the optimal MAW. However, pure warp
throttling reduces the number of warps and therefore loses
the benefits of massive multithreading, e.g. hiding memory
latency. It also causes the Network-on-Chip (NoC) and
DRAM bandwidth to be underutilized, artificially limiting
opportunities to further improve performance.

Both pure bypassing and pure warp throttling have
performance limitations. Fig. 1 shows the performance
improvement of BFS (Breadth First Search) under two
schemes: SWL with bypass-disabled (SWL) and bypass-
enabled (SWL+bypass). We change the MAW of SWL
from 1 to 24 in our experiment. BFS has memory divergence
because its access behavior depends on input data, and
can not be well coalesced at programming or compile
time. The figure illustrates that bypassing improves system
performance over SWL for any given MAW that is larger than
2. In particular, limiting MAW from 24 to 7 can improve
the normalized IPC of SWL+bypass from 1.36× to 1.77×.
The figure also shows that the optimal MAWs that maximize
the performance of SWL and SWL+bypass are different (3
and 7 respectively). The optimal MAW is increased when
enabling bypassing because bypassing allows more warps to
issue memory requests without degrading cache performance
(since cache lines are protected by the thrashing-resistant
bypass policy), and the spare bandwidth is utilized to send
requests to the next level of memory hierarchy. This implies
that coordinated bypassing and warp throttling (CBWT) can
further improve performance over pure cache bypassing or
pure warp throttling. The same trend is observed for other
cache sensitive benchmarks (Fig. 8).

To overcome the limitations of pure bypassing and pure
warp throttling, we present a specialized cache management
policy for GPGPUs. Cache contention and resource conges-
tion caused by massive multithreading is detected at runtime,
and the detector notifies the controller to enable cache by-
passing dynamically. The reuse distance-based bypass policy
protects hot cache lines from early eviction, and is coordi-
nated with warp throttling to avoid over-saturating on-chip
resources. To estimate the optimal number of active warps,

we propose a simple predictor using a gradient method based
on dynamic sampling of contention and congestion intensity.
All these features in our policy are designed on top of a cost-
effective cache structure with simple sampling modules. This
paper makes the following contributions:

• We characterize cache behavior of massively multi-
threaded applications on GPUs, and evaluate existing
CPU cache management policies ported to GPU. Ex-
perimental results show the performance opportunities
as well as limitations.

• We present an adaptive cache management policy,
namely CBWT, for GPGPUs. Cache contention and
on-chip resource congestion caused by massive mul-
tithreading are detected dynamically, based on which
the bypass policy is coordinated with warp throttling
to take full advantage of the GPU cache capacity and
other on-chip resources.

• We propose a simple dynamic predictor for CBWT
and implement it in a cycle-accurate simulator. Exper-
imental results demonstrate that it can improve cache
performance and better utilize on-chip resources, and
therefore improve IPC by 1.74× and 1.17×, compared
to the baseline GPU architecture and optimal static
warp throttling respectively.

The rest of the paper is organized as follows: the baseline
GPU architecture is introduced in Section II. Benchmark
characterization and motivation is presented in Section III.
Section IV evaluates the state-of-the-art bypass policy on
GPU. The proposed management scheme is described in
Section V. Section VI presents the experimental results. Sec-
tion VII discusses related works, and Section VIII concludes.

II. BASELINE GPU ARCHITECTURE

Fig. 2 shows the organization of our baseline GPU archi-
tecture, which is similar to a typical modern GPU design
as found in NVIDIA or AMD GPUs. Our work is also
applicable to the GPU part of HSA-like heterogeneous archi-
tectures [25], which usually have smaller GPU cache sizes
than discrete GPUs. Note that although we use NVIDIA
CUDA terminology in the following sections, our design is
also applicable to OpenCL.

Execution Model. In this paper, we assume that kernels
execute sequentially, i.e. only one kernel is executed at a
time. Each kernel includes groups of threads called coop-
erative thread arrays (CTAs), i.e. thread blocks or work
groups. Within each CTA, subgroups of threads called warps
are executed in lockstep fashion. We call warps running on
the same SIMT core sibling warps. Warp schedulers are re-
sponsible for scheduling sibling warps onto execution units.
Many scheduling policies have been proposed, such as loose
round-robin (LRR), greedy-then-oldest (GTO) [39], two-
level scheduling [32], CTA-aware scheduling [20], cache-
conscious scheduling (CCWS) [39], and divergence-aware
scheduling (DAWS) [40].

SIMT Core SIMT Core SIMT Core

L1 Memory L1 Memory L1 Memory

Memory
Partition

Memory
Partition

Interconnection Network

... ...

...

GDDR5
DRAM

GDDR5
DRAM

Scratchp
ad L1 Data

Cache

Coalescing Unit

MSHR

AOU Memory
Controller

L2 BankMSHR

Figure 2. Baseline GPU Architecture

Memory Hierarchy. The GPU memory hierarchy con-
sists of register files, L1 memories (scratchpad and L1 data
cache), shared L2 cache, and off-chip GDDR DRAM [33],
[35], [1]. For simplicity, we do not discuss texture caches
or other special-purpose caches in detail. L1 memory is
private per-core and shared by sibling warps. Scratchpad
memory is programmer visible and is used for explicit intra-
CTA communication. The L2 cache works as the central
point of coherency, and is shared across all threads of the
entire kernel. It is connected to the SIMT cores through
an interconnection network, and partitioned into multiple
banks that are connected to each memory channel. Memory
controllers schedule memory requests that miss in the L2
cache to the DRAM. In both levels, missed requests are
recorded by the Miss Status Holding Registers (MSHRs),
and then sent to the next level of the memory hierarchy.
Atomic operations are performed at each memory partition
by the Atomic Operation Unit (AOU).

Throughput-oriented Cache Design. GPU caches are
designed for maximizing throughput in terms of memory
coalescing, write policy, coherency, inclusion property, etc.
GPUs conserve memory bandwidth by grouping requests
issued simultaneously from the same warp. All requests
are merged, if possible, by a hardware coalescing unit
before being sent to L1 caches. Thus the spatial locality
benefits provided by CPU caches can be largely captured
by the coalescing unit in GPUs when programmers are
careful with the memory access patterns in their programs.
GPU L1 caches typically feature a write-through policy,
with [1] or without [33], [35] write-allocation. This policy
saves bandwidth compared to a write-back policy [41], [16],
since GPU applications have very little reuse on written
data. The L2 cache is write-back with write-allocation,
which is the same design choice as a conventional CPU
LLC. Modern GPUs typically do not provide hardware
support for L1 cache coherence to avoid the overhead
that coherence messages add to NoC traffic and memory
access latency [41], [16]. Current GPU L2 caches do not
enforce inclusion. NVIDIA GPU caches are non-inclusive
non-exclusive caches [2], [41], meaning cache lines that are
brought into L1 caches are also brought into the L2 cache,
but an L2 cache line is evicted silently (without recalling

 0

 1

 2

 3

 4

BFS KMN PVC SSC PVR IIX WC

N
o
rm

a
liz

e
d

 I
P
C

8.
2

8.
5

32KB
64KB

128KB
256KB
512KB

Figure 3. Speedups over 32KB L1 cache as the L1 cache size increases

Benchmarks Description Suite
Highly Cache Sensitive (HCS)

BFS Breadth First Search [7]
KMN K-means Clustering [7]
PVC Page View Count [15]
SSC Similarity Score [15]
PVR Page View Rank [15]
IIX Inverted Index [15]
WC Word Count [15]

Moderately Cache Sensitive (MCS)
SM String Match [15]
SPMV Sparse Matrix Vector Multiply [42]
FFT Fast Fourier Transform [42]
CFD CFD Solver [7]
NW Needleman-Wunsch [7]

Cache Insensitive (CI)
SD1 Graphic Diffusion [7]
BP Back Propagation [7]
STL Stencil [42]
WP Weather Prediction [34]
FWT Fast Walsh Transform [34]

Table I
GPGPU BENCHMARKS, CATEGORIZED BY THEIR CACHE SENSITIVITY

THAT IS MEASURED BY CHANGING L1 CACHE SIZE (FIG. 3)

L1 caches) when replacement happens. This design reduces
the number of redundant data copies than inclusive caches,
but still allows L1 caches to locally provide shared input
values. Hardware prefetching and victim cache are ruled
out according to the micro-benchmarking experiments [3],
which are reasonable hardware tradeoffs for GPUs.

III. UNDERSTANDING GPU CACHE INEFFICIENCY

In this section, we evaluate GPU cache performance
to understand application behaviors on a cache hierarchy
similar to those in current GPUs. We use memory intensive
GPU benchmarks selected from Parboil [42], Rodinia [7],
MapReduce [15] and the CUDA SDK [34] (listed in Table I).
We categorize the benchmarks into highly cache sensitive
(HCS), moderately cache sensitive (MCS) and cache insen-
sitive (CI) ones. Note that if an application mostly uses
the programmable scratchpad, it is generally not sensitive
to L1 data cache size. Although our work mostly focuses
on HCS benchmarks, CI benchmarks are included to show
the robustness of our design.

Cache contention. Previous CPU cache management
studies [17] have highlighted some problems that limit CPU

 0

 20

 40

 60

 80

 100

BFS KMN PVC SSC PVR IIX WC SM SPMV FFT CFD NW SD1 BP STL WP FWT

Pe
rc

e
n
ta

g
e
 (

%
) 0

1
2~4
5~8
>=9

Figure 4. L1 cache reuse count distribution. It shows the number of repeated accesses to cache blocks in L1, after the block is filled in.

 0

 20

 40

 60

 80

 100

BF
S

KM
N

PV
C

SS
C

PV
R

IIX W
C

SM SP
M
V
FF

T
CFD NW SD

1
BP ST

L
W

P
FW

T

C
o
n

te
n

ti
o
n

 R
a
te

 (
%

)

Figure 5. The L1 cache (32KB) contention ratio detected by the L2 cache.
A repeated memory request sent from the same L1 cache to the L2 cache
is counted as a victim request. The contention ratio is calculated by total
number of victim requests over total number of requests to the L2 cache.

cache efficiency. One of these problems is thrashing [37], i.e.
the working set is larger than the cache size. This becomes
worse for GPU caches as their effective size per thread
diminishes with a large number of concurrent threads, e.g.
Fermi supports a maximum of 48 warps on each SIMT
core, and each warp contains 32 SIMT threads, and these
up to 1536 threads share 16KB or 48 KB L1 data cache.
In GPUs, thrashing can be caused by intra- or inter-warp
contention [39], [19]. Inter-warp contention happens when
sibling warps contend for L1 cache space that they share
and continually replace the data of each other in the cache.
Unfortunately, Rogers et al. [39] show that the Belady-
optimal policy [5], which always chooses the furthest reused
candidate to replace, cannot address the contention problem
because the application working set is usually much larger
than the cache size, which causes frequent early eviction.

To illustrate how contention significantly impacts HCS
applications, Fig. 3 shows the speedup of HCS benchmarks
with increasing L1 cache size over the baseline (32KB L1).
For these benchmarks, increasing L1 cache size reduces
contention and improves performance. Fig. 4 shows the
reuse count distribution for the 32KB L1 cache. For most
of the benchmarks, a large percentage of the cache lines
inserted into the L1 caches are never reused (the zero
reuse count). The zero-reuse cache lines are either streaming
accesses or victims of early eviction. Fig. 5 presents the L1
contention ratio detected by the L2 cache. This indicates that
early eviction happens very frequently for HCS benchmarks.
Note that since the contention ratio is detected by the L2
cache, with limited L2 cache size, it might be inaccurate

 0

 20

 40

 60

 80

 100

 120

BFS KMN PVC SSC PVR IIX WC

N
u

m
b

e
r

o
f

C
y
cl

e
s 1

2
3
5

8
12
16
24

Figure 6. Average NoC latency (number of cycles that a packet takes to
walk through the network) changes as MAW increases from 1 to 24.

if the L2 cache also has severe contention. KMN is such a
benchmark that generates a lot of accesses and causes severe
contention in both L1 and L2 caches. However, the measured
L1 contention ratio is not very high, because the L2 cache
lines are also frequently evicted and only able to accumulate
some of the contention requests.

Resource congestion. Massive multithreading can cause
resource congestion that is not typically seen in CPU caches.
This is one of the reasons why cache efficiency does
not directly correlate positively with system performance
in GPUs. When congestion occurs, memory requests can
neither be serviced nor be sent to the next level of memory
hierarchy, wihch leads to severe memory stalls and causes
computation units under-utilized. In this paper, we focus
on NoC bandwidth that may become the bottleneck when
bypassing is enabled. When a massive number of requests
are generated and miss in L1 cache, they are sent to the L2
cache via NoC and can quickly saturate NoC bandwidth.
And then the packet transfer latency becomes dramatically
high. This not only hampers performance, but also degrades
power-efficiency, because the program gains no speedup
(even slows down if considering cache behavior) but NoC is
quite power-consuming (close to 10% of the entire system
power) [28]. Fig. 6 presents the average NoC latencies of
HCS benchmarks change as their MAWs increase from 1
to 24. The NoC latency becomes dramatically high when
MAW is larger than 5 for most of the benchmarks, because
more concurrent warps generate more requests and quickly
saturate the NoC.

IV. CACHE BYPASSING ON GPUS

In CPUs there are several ways to deal with cache
contention. Increasing cache size could help, but cannot
improve cache efficiency if the application working set

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 I
P
C

Protection Distance
HCS

BFS
KMN
PVC
SSC
PVR

IIX
WC

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 I
P
C

Protection Distance
MCS

SM
SPMV

FFT
CFD
NW

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 I
P
C

Protection Distance
CI

SD1
BP

STL
WP

FWT

Figure 7. Performance of SPDP-B changes as the protection distance increases, normalized to baseline.

is even larger, and it increases access latency, area, and
power consumption. Cache management policies have been
investigated to improve cache efficiency [17], [11]. However,
advanced replacement policy can not solve GPU cache
contention problems, because the effective cache size is too
small in the massive multithreading environment [3]. To
make good use of the cache space, hot cache lines should
be protected, and requests to conflicting addresses have to
be bypassed when contention happens. Thus, existing CPU
bypass policies [12], [11] can be applied to GPU to avoid
pollution and thrashing access patterns.

The state-of-the-art bypass policy, protection distance
prediction (PDP) [11], introduces protection distance (PD) to
protect cache lines. Each line has a remaining PD (RPD) to
indicate how many accesses this line will be protected from.
When a line is inserted or promoted, its RPD is set to the PD.
The RPD is then decremented for each access to the target
set. A line is protected only if its RPD is larger than 0. An
unprotected line can be replaced by the incoming requests.
The cache is bypassed if no unprotected lines are found.
Two schemes are introduced: static PDP bypass (SPDP-B)
and dynamic PDP. SPDP-B uses a statically determined PD.
Dynamic PDP predicts reuse distance (RD) by hardware
sampling, and periodically estimates the optimal PD (which
maximizes the hit rate) based on RD sampling.

We first implement SPDP-B for GPU L1 caches to show
how the benchmarks behave in response to different PDs.
We enumerate the PD from associativity to maximum PD
(4 to 64). Fig. 7 illustrates the effect on performance. For
HCS benchmarks, the optimal PD can lead to significant
speedups. However, the curves are flatter than those observed
in CPUs [11]. This is because GPU warp interleaving makes
the memory behavior much less predictable, and thus the
RD is relatively unstable in such a massive multithreading
environment. But the RD-based protection mechanism is still
beneficial for GPUs, because statistically, GPU memory be-
havior is still predictable [3]. The relatively flat curve implies
that a suboptimal prediction may not lose too much benefit,
which is an opportunity to reduce hardware overhead. Note
that STL and SD1 have short RDs, and thus need small PDs.
A large PD leads to poor performance for them because it
protects some cache lines beyond their lifetime, delaying
their replacement with useful data.

We also implement dynamic PDP for GPU L1 caches.
There are three design choices, PDP-private (PDP-P), PDP-

global (PDP-G) and PDP-shared (PDP-S). PDP-P enhances
each L1 cache with a PDP module, and each L1 cache
predicts PD locally using its private PD predictor. PDP-G is
a centralized design, which collects access sequences from
all the SIMT cores, and makes a centralized prediction for
all L1 caches. PDP-S chooses only one (or several) SIMT
core as a sampler. The sampler makes local prediction and
applies its PD to all the other SIMT cores.

We evaluate the performance improvement of the three
designs. As the most expensive design, PDP-P achieves the
best performance (on average 50.6% IPC improvement over
baseline on HCS benchmarks), because each L1 cache has its
own predictor, which can make a more accurate prediction
when SIMT cores have different memory behaviors. PDP-
G and PDP-S achieve average IPC improvement of 44.6%
and 45.4% respectively, which are close to that of PDP-P.
PDP-S performs very similarly to PDP-P for most of the
benchmarks. This is because GPU programs usually have
similar behavior for all the threads [27], and the optimal PD
estimated by one of the SIMT cores is probably also the
optimal PD for the rest. In the following sections, we adopt
the PDP-S design since it is the cheapest one. Note that load
imbalance may lead to different reuse distance for different
SIMT cores, and therefore reduce the performance benefit
for PDP-S. However, even with suboptimal PD, PDP-S is
able to protect hot cache lines and improve cache efficiency,
given that GPU applications generally benefit over a broad
range of PD values, as shown in Fig. 7.

Despite the potential performance benefit, the PDP bypass
policy is less effective in GPUs because of the following
limitations. First, the PD prediction, which is intuitively
designed for CPU LLCs, is based on a hit rate model [11].
However it is not robust in GPUs due to warp interleav-
ing [8]. As was discussed before, GPU cache performance
does not always correlate positively with system perfor-
mance due to resource congestion and warp interleaving.
Therefore a pure hit rate model that leads to better cache
performance for single threaded processors may not result
in system performance improvement in a massively par-
allel environment. Second, a massive amount of memory
requests sent to the cache subsystem may saturate on-chip
resources. When memory divergence occurs, MSHRs can
easily become full, and the incoming requests are congested
until an MSHR is available, which leads to severe memory
stalls [19]. If the requests that bypass cache blocks also

bypass MSHRs, this may reduce the burden of MSHRs,
but read accesses to the same cache line would be sent
multiple times to the next level of memory hierarchy, which
loses locality and wastes NoC or DRAM bandwidth. This
is especially serious when memory divergence results in a
huge working set and the reuse distance is so large that
PDP would bypass a large portion of the memory requests
to keep the cache efficient. Then the massive amount of
bypassed accesses would be sent through the NoC and
DRAM channel, causing heavy traffic and thereby degrading
performance.

For the first limitation, since an inaccurate PD prediction
usually will not lose too much performance (as shown in
Fig. 7), trying to improve prediction accuracy with extra
hardware is not cost-effective. However, for the second
limitation, we intend to introduce warp throttling to control
the amount of requests that are allowed to be issued to the
memory subsystem. This control is not possible with pure
bypassing mechanism.

V. ADAPTIVE CACHE MANAGEMENT SCHEME

As we described in Section III, massive parallelism causes
cache contention and congestion, leading to inefficient cache
usage and unsatisfactory performance on GPUs. This mo-
tivates specialized management to handle different access
behaviors in GPUs. If contention occurs, the cache controller
needs to trigger bypassing to protect hot cache lines long
enough to avoid early eviction. However, when bypassing
is hampered by resource congestion, the warp scheduler
should be notified to throttle multithreading. We first present
the bypass policy coupled with the static warp throttling
technique, to demonstrate the potential performance benefit
of our approach. Then the hardware enhancement needed
to detect access patterns is introduced. Finally, we propose
the runtime management scheme coordinated bypassing and
warp throttling (CBWT) which combines bypassing with
warp scheduling to dynamically control parallelism and take
full advantage of on-chip resources.

A. Bypassing with Static Warp Throttling

Warp throttling alleviates contention by suspending some
of the active warps. In SWL scheme, we can find the
optimal MAW by static brute-force search. The optimal
MAW is different for different benchmarks and changes for
each benchmark when its input data is changed [39]. While
SWL can reduce the degree of multithreading, bypassing
tries to selectively accommodate the cache space with hot
cache lines and forward the others to the lower level of the
memory hierarchy. When bypassing is enabled together with
SWL, there is an opportunity to further improve performance
because pure warp throttling may lead to under-utilization
of on-chip resources, but cache bypassing can enable more
multithreading without degrading cache performance.

 0
 1
 2
 3
 4
 5
 6
 7

BFS KMN PVC SSC PVR IIX WC

N
o
rm

a
liz

e
d

 I
P
C

9.
4

8.
3

1
2
4
5

6
7
9

24

Figure 8. Performance of SWL at various multithreading limits, i.e.
MAWs, when bypassing is enabled. Normalized to SWL-24 with bypassing
disabled.

Fig. 8 shows the speedups over baseline on HCS bench-
marks as the MAW increases, when PDP bypassing is
enabled for L1 caches. The scheme that picks the optimal
MAW is called Best-CBWT in Section VI. In the figure, we
observe that the optimal MAWs for HCS benchmarks are
always smaller than 24, because too many concurrent warps
cause contention and congestion. However, the performance
is also not satisfactory when MAW is too small, due to re-
source under-utilization. Compared to SWL with bypassing
disabled (not shown in the figure), for most of the HCS
benchmarks, we find that the optimal MAW is increased
when bypassing is enabled. This is because when bypassing
is enabled, it is possible to issue more warps without
degrading cache performance, since caches are protected
by the bypass policy. The extra warps can take advantage
of the underutilized NoC and/or DRAM bandwidth, which
can potentially improve system performance. Likewise, the
new optimal MAW is different for different benchmarks
and inputs. This motivates us to find the optimal MAW
dynamically.

B. Hareware Extension

To be able to dynamically manage the cache system in
response to different access behaviors, the controller should
be aware of the feedback information from caches and other
on-chip resources. We here introduce the hardware extension
that enables access behavior detection. Our detection mech-
anism tries to leverage existing hardware and thus has a very
low hardware cost to implement.

Contention Detection. Detecting thrashing access pat-
terns is essentially detecting early eviction. When an evicted
line is reaccessed it is interpreted as an early eviction. The
number of early evictions detected in a given period is called
the lost locality score (LLS) [39]. A high LLS indicates that
the hardware should throttle parallelism to reduce thrashing.
To dynamically adjust MAW, CCWS introduces the victim
tag array (VTA) to collect the lost locality as feedback.
CCWS adds a VTA for each L1 cache to detect prematurely
evicted lines. The VTA holds the tags of recently evicted
lines. If one of these lines is reloaded into the cache, it
indicates that an early eviction occurred.

To reduce hardware cost, we extend the tag array of L2
cache with extra bits. As shown in Fig. 9, an L2 cache entry

consists of these fields: state bits, PD (protection distance),
tag, data and victim bits. The state bits, PD, tag, and data
are functionally the same as those in PDP caches. The
victim bits are added to record the lost locality. They are bit
masks associated with a cache line where each bit records
the access history from a particular L1 cache before the
line’s eviction. The bit is set when the L2 cache fulfills a
request from the corresponding L1 cache, and reset when the
line is evicted from L2 cache. Using the victim bits, early
eviction in an L1 cache can be detected when the L1 cache
sends a second request for a cache line that was requested
recently. In this case, the LLS is incremented to indicate
that a reuse opportunity is lost. When the LLS rate (LLS
over total number of accesses) is high enough, the L2 cache
notifies the L1 cache indicating that contention is detected.
The hardware overhead can be reduced by sampling, i.e.
some (e.g. one in every 64 sets) of the L2 cache sets are
selected as samplers and enhanced with the extra bits, while
other sets remain the same as normal ones. It is worth
pointing out that our design is cost-effective because the
existing tag array in the L2 cache is leveraged to collect
information for L1 caches instead of adding an extra VTA
to each L1 cache. The overhead can be further reduced by
letting multiple SIMT-cores share the same victim bit.

Congestion Detection. Jia et al. [19] observed cache
resource (cache block, miss queue or MSHR) congestion
in some applications and proposed to check resource reser-
vation failures and trigger bypassing. In this paper, however,
we focus on congestion caused by bandwidth (NoC or
DRAM) saturation. This can be detected by monitoring
NoC and the memory controllers. It provides the feedback
information to control bypassing and multithreading. When
cache congestion is detected, the cache controller enables
bypassing. If NoC or DRAM congestion is also detected,
the warp schedulers are notified and they may try to reduce
the number of active warps according to the statistical
information related to congestion and bypassing. In our
implementation, we focus on L1 cache bypassing and only
detect NoC congestion. This information is used to estimate
the optimal MAW in Section V-C. Some NoC packets
are randomly selected as samplers, and the NoC latencies
(number of cycles used to travel through the network)
of these samplers are recorded by the hardware counters.
The average NoC latency is calculated after each sampling
period.

C. Coordinated Bypassing and Warp Throttling

Our proposed method for dynamic CBWT uses the run-
time observed L1 cache bypass rate, NoC congestion, and

State Tag DataPD
Victim

Bits

Figure 9. Hardware Extensions on the L2 Cache

L1 Cache

NoC

Misses

Misses

HitsBypasses

SIMT core

L2 Cache

Hits

Misses

Misses

DRAM Channel

Hits

Congestion
Detector

CBWT
predictor

Contention
Detector

Figure 10. Cache hierarchy overview of CBWT. Memory requests consist
of hits, misses and bypasses. Caches are protected by the PDP bypass
policy. Extra sampling modules (yellow blocks) are added to monitor
contention and congestion. To overcome the limitations of bypassing,
CBWT adaptively controls the number of active warps to take full advantage
of the cache capacity and other on-chip resources.

L1 contention to adjust the number of active warps to
avoid overburdening the memory system. The feedback
paths are illustrated in Fig. 10. Note that in this paper we
only implement CBWT in L1 caches, and we leave the
extension to L2 cache as future work. Sampled statistics are
accumulated over periods of 16k accesses to the sampler
L1 cache (one of the existing L1 caches that is selected
for sampling reuse information for PDP-S). The hardware
attempts to adjust the MAW to keep the network in a busy
but low-congestion range.

The MAW is adjusted in multiple steps, illustrated in
Fig. 11. A kernel begins executing using the maximum
possible number of warps, nmax. Then, the hardware sets
the MAW to an estimated optimum value based on the
observed rate of bypassing (¶). When the MAW drops
below a threshold Tw, it is adjusted in steps of ±1 to bring
the network latency into the target range. When the NoC
latency is larger than a threshold (TNoC H) or the change
of NoC latency is larger than another threshold (TNoC G),
the MAW is decremented (·). Similarly, when the NoC
latency is smaller than a threshold (TNoC L), the MAW is
incremented (¸).

The initial MAW estimate (¶) is based on a simple
model of memory behavior. The model does not need to
be very accurate since the MAW is subsequently adjusted
with hardware feedback. Suppose that each thread in a
SIMT-core repeatedly accesses a single cache line, there is
no inter-thread sharing, and warps are scheduled in round-
robin order. Then the working set size is proportional to the
number of active warps, and locality can be maximized by

Figure 11. As the number of active warps increases, NoC latency tends to
grow up to a saturation point. Coordinated bypassing and warp throttling
uses feedback to keep the network in the busy but low-congestion range
between TNoC L and TNoC H .

scaling down the MAW so that the working set size matches
the cache size. During a sampling period, the number of
bypassed memory requests mb (representing possibly-reused
data that does not fit in the cache) and the total number of
memory requests m are recorded. The ratio mb/m is the
fraction of the working set that does not fit in cache. The
MAW is scaled down to

nt = (1− mb

m
)× nmax, (1)

where nt is the estimated optimal MAW with only warp
throttling, to match the working set to the cache size.

Fig. 12 shows the summarized detail of the proposed
MAW search algorithm. During each sampling period, the
contention and congestion information is collected. The
direction is a status variable, which holds the change (in-
creasing or decreasing) of MAW in the previous sampling
period. A coarse and aggressive search (¶) based on Eq. 1
happens when contention and congestion are detected (by
monitoring the LLS ratio and NoC latency). When the MAW
is smaller than Tw (set to 10 in our implementation), a fine-
grained and conservative search (· and ¸) is performed.
If the NoC latency is large or the change of NoC latency
is significant (e.g. decreased by more than 5%), the MAW
is decreased (·). On the other hand, if the NoC latency
is small, the MAW should be increased to exploit more
parallelism (¸). In this conservative search, the MAW can
also be rolled back one step (¹) when the previous update
is out of the sweet spot. The search stops when congestion
falls in the desired range (º and »). By making an initial
estimate of the MAW and then incrementally adjusting it
using hardware feedback, our method dynamically selects a
good MAW quickly.

D. Hardware Cost and Complexity

CBWT has comparatively low hardware overhead. The
additional costs in both storage area and logic complexity are
reasonably low, so that the proposed memory hierarchy can
be easily produced with the current manufacturing process.
The bypass policy overhead is the same as PDP cache [11],
but since we apply it in L1 caches, the PDP sampling
overhead is lower than that in LLCs, because L1 caches have
smaller sizes and require fewer sampling sets. Moreover

direction = ?
contention &
congestion?

MAW>Tw
Update MAW

using Eq.1

NoC_lat > TNoC_H
or grad_NoC_lat

> TNoC_G

MAW--MAW++

NoC_lat

< TNoC_L

NoC_lat

> TNoc_H

MAW--

MAW++

Convergence

Phase Start

Decreasing

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Update
direction

Update
direction

Increasing

Sampling
boundary?

Yes

❶

❷

❸

❹

❺

❻

Figure 12. Flow chart of the proposed algorithm. NoC lat=NoC latency.

since we choose the PDP-S design, the bypass policy only
requires one predictor and sampling module, the bypass
policy overhead is negligible. As for CBWT prediction,
the storage overhead has three parts. The first one is the
congestion detector which requires counters to calculate the
NoC latency of the sampler packets. The second part is the
contention detector which includes victim bits as well as
two saturating counters to accumulate LLS and the number
of accesses to the sampler sets in the L2 cache. Assume
the storage overhead for victim bits is represented by Ov .
and the L2 cache has N sampler sets and M ways, and the
number of L1 caches is P . Then the storage overhead is:
Ov = P×N×M bits. For a 16-core GPU with a 16-way 1M
L2 cache and the sampling ratio is 1

64), 8 sets are selected as
samplers (512 sets in total), then Ov = 256B. The third part
is the predictor, and since the search algorithm is relatively
simple, the predictor is also cheap to implement.

VI. EVALUATION

We first evaluate CBWT and pure bypassing design
by considering the improvements on overall performance,
their impact on cache efficiency, DRAM traffic and power
efficiency. Then CBWT is compared with the pure warp
throttling scheme, i.e. CCWS [39]. We also compare CBWT
with MRPB [19], wihch employs request buffers to reoder
memory requests to preserve intra-warp locality before they
are sent to L1 caches. We use GPGPU-Sim v3.2.0 [4] to
model the baseline architecture which mimics a generic
NVIDIA Fermi GPU [33]. The baseline architecture uses
a detailed GDDR5 DRAM model. NoC traffic in each
direction between the SIMT cores and the memory partitions
are serviced by two separate networks which can transfer
a 32-byte flit per interconnect cycle to/from each memory
partition. GPUWattch [28] is used to estimate the power con-
sumption. Table II lists the major configuration parameters.

 0
 0.5

 1
 1.5

 2
 2.5

 3

BF
S

KM
N

PV
C

SS
C

PV
R

IIX W
C

Har
M

SM SP
MV

FF
T

CF
D

NW Har
M

SD
1

BP ST
L

W
P

FW
T

Har
MN

o
rm

a
liz

e
d

 I
P
C 7.

6
9.
4

PDP-S
CBWT

Best-CBWT

CIMCSHCS

Figure 13. Performance improvement of PDP-S and CBWT over baseline on all benchmarks.

 0
 20
 40
 60
 80

 100

BF
S

KM
N

PV
C

SS
C

PV
R

IIX W
C

SM SP
MV

FF
T

CF
D

NW SD
1

BP ST
L

W
P

FW
TM

is
s

R
a

te
 (

%
)

Baseline
PDP-S
CBWT

Best-CBWT

CIMCSHCS

Figure 14. L1 cache miss rate on all benchmarks.

The benchmarks in Table I are used for evaluation.

A. Comparison with Pure Bypassing

Performance. Compared to pure bypassing, CBWT is
able to control the number of active warps, and thus reduces
reuse distance as well as alleviates resource congestion. This
is especially critical for those applications whose reuse dis-
tances are long and a huge number of memory requests make
the NoC highly congested. Fig. 13 illustrates normalized per-
formance (IPC) improvement of PDP-S, CBWT and Best-
CBWT on all benchmarks, with respect to baseline. Best-
CBWT is the optimal SWL with bypassing enabled, which
is described in Section V-A. It shows that CBWT achieves
an average of 74% IPC improvement on HCS benchmarks
over baseline, which significantly outperforms PDP-S (42%
improvement over baseline). This is mainly because CBWT
reduces MAWs when contention and congestion are de-
tected. Although PDP-S can alleviate contention, it can not
handle NoC over-saturation caused by a massive amount of

SIMT Core 16 cores, SIMT width=32,
5-Stage Pipeline, 1.4GHz

Per-core Limit 48KB scratchpad, 32768 registers,
32 MSHRs, 1536 threads, 48 warps

L1 Cache 32KB/core, 4-way, 128B line,
coalescing enabled

L2 Cache 8 banks, 128KB/bank,
16-way, 128B line

Scheduling LRR warp scheduling,
round-robin CTA scheduling

Interconnect 32B channel width, 1.4GHz,
BW=350GB/s per direction

DRAM Model Out-of-order (FR-FCFS), 924 MHz,
8MCs, channel BW=8Bytes/Cycle

GDDR5 Timing tCL=12, tRP=12, tRC=40,
tRAS=28, tRCD=12, tRRD=6

Table II
SIMULATION CONFIGURATION

requests. For HCS benchmarks, CBWT reduces 18.3% of the
average NoC latency compared to PDP-S. With the bypass
ratio CBWT can quickly find the optimal or near-optimal
MAWs, and throttle the memory request flow to fully utilize
on-chip resources. Among the HCS benchmarks, KMN and
IIX exhibit tremendous speedups over baseline, 7.6× and
2.7× respectively, by alleviating intensive cache contention
as well as severe NoC congestion.

Compared to Best-CBWT, CBWT only loses 8.6% perfor-
mance for HCS benchmarks on average. For SSC, it even
slightly outperforms Best-CBWT because this benchmark
has a phase change property and a fixed MAW cannot get
optimal performance. CBWT cannot constantly outperform
Best-CBWT because the prediction has a start-up cost
associated with the contention and congestion detection.
For example, for BFS which consists of multiple small
kernels, CBWT is much worse than Best-CBWT. And also
since the prediction is not always 100% accurate, CBWT
may get sub-optimal performance. However, since CBWT
precisely controls the intensity of contention and congestion,
it predicts well and overall archives competitive performance
compared to Best-CBWT. Fig. 13 also shows normalized
performance on MCS and CI benchmarks. For most of them,
the bypass policies make little difference to performance
since they are not very sensitive to cache behavior. For
all of the benchmarks, CBWT does not obviously degrade
performance compared to the baseline, especially for HCS
benchmarks.

Cache Efficiency. Fig. 14 illustrates that the reason for the
performance improvement for PDP-S and CBWT on HCS
benchmarks is a sharp reduction in cache misses. For exam-
ple, more than a 50% reduction is observed under CBWT
for KMN and IIX compared to baseline. The miss rate of
HCS benchmarks declines dramatically for PDP-S because
bypassing can effectively alleviate cache contention. The

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

BFS KMN PVC SSC PVR IIX WC GeoM

N
o
rm

a
liz

e
d
 D

R
A

M
 t

ra
ff

ic

Baseline
PDP-S
CBWT

Figure 15. DRAM traffic on HCS benchmarks, normalized to baseline.

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS KMN PVC SSC PVR IIX WC GeoM

N
o
rm

a
liz

e
d
 P

e
rf

/W
a
tt

6.5

Baseline
PDP-S
CBWT

Figure 16. Energy efficiency on HCS benchmarks, normalized to baseline.

cache lines are protected from early eviction when thrashing
happens. CBWT further decreases miss rate over PDP-S
because it limits the number of active warps that can issue
memory requests to the cache system, and thus preserves
inter-warp locality by delaying some of the requests. This
is especially important when the application working set is
too large and a large percentage of requests are bypassed
and congest the network. For the MCS and CI benchmarks,
miss rates are relatively similar for different policies. These
are consistent with the performance results.

DRAM Traffic and Energy Efficiency. Fig. 15 shows
DRAM requests generated by HCS benchmarks. On average,
PDP-S can reduce 16.5% of DRAM traffic. CBWT reduces
DRAM traffic by more than 50% on average, which is due
to the combined effects of bypass policy and warp throttling.
The dramatic reduction of DRAM traffic leads to an average
DRAM power reduction of 14.4%. Fig. 16 shows the system
energy efficiency (Perf/Watt) for HCS benchmarks. Overall,
CBWT outperforms the baseline GPU with an average of
58.6% system energy efficiency improvement in terms of
Perf/Watt. For all evaluated benchmarks, including HCS,
MCS and CI benchmarks, CBWT has an average of 25.4%
system energy efficiency improvement over the baseline.
Considering only the effect on DRAM energy efficiency,
although not shown in the figure, CBWT provides an average
of 111% (2.11×) Perf/Watt improvement over the baseline.
Overall, CBWT gives an average of 76.7% DRAM energy
efficiency improvement.

B. Comparison with Other Schemes

Perfomance. Fig. 17 shows normalized performance
(IPC) improvement of Best-SWL (static optimal CCWS),
MRPB, and CBWT on HCS benchmarks, normalized to
the baseline. CBWT shows an average IPC improvement
of 1.74×, which outperforms Best-SWL and MRPB (1.52×
and 1.57× respectively). Compared to CCWS, however,

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS KMN PVC SSC PVR IIX WC HarM

N
o
rm

a
liz

e
d

 I
P
C

5.
7
4.

5
7.

6

Best-SWL
MRPB
CBWT

Figure 17. Performance improvement of Best-SWL, MRPB, and CBWT
on HCS benchmarks.

CBWT allows more active warps to run concurrently. More
threading not only speeds up computation, but also more
effectively hides memory latency. This is because CBWT
can better take advantage of the spare bandwidth and service
more requests earlier, which leads to fewer memory stalls.
Compared to MRPB which has no control on the NoC flow,
CBWT is also able to better utilize NoC bandwidth. Thus
performance improvements are observed for the benchmarks
that generate a massive amount of requests. For example,
the speedups of KMN under Best-SWL and MRPB are
significantly smaller (5.7× and 4.5× respectively) than that
under CBWT (7.6×). We also observe dramatic speedups
when applying Best-SWL and MRPB for IIX (1.9× and
2.1× respectively), but CBWT is still able to further improve
performance (2.7×).

Interaction with Warp Schedulers. The LRR (Loose
Round Robin) [39] warp scheduling policy used in the
baseline has been shown to be inefficient compared to
advanced scheduling policies [20], [39], [40]. We change the
policy to GTO (Greedy Then Old) which runs a single warp
until it stalls then picks the oldest ready warp, and evaluate
the performance of Best-SWL, MRPB and CBWT. Fig. 18
illustrates the average IPC of Best-SWL, MRPB and CBWT
on HCS benchmarks, normalized to baseline. It shows that
CBWT outperforms Best-SWL and MRPB, no matter which
policy the scheduler uses. If normalized to Best-SWL,
MRPB achieves almost the same performance, while CBWT
achieves 17.3% and 37.8% performance improvement with
LRR and GTO scheduler respectively.

CBWT provides more improvement when GTO is applied
because GTO shrinks the performance benefit of Best-
SWL and MRPB, since they both only focus on cache
performance. However CBWT monitors NoC congestion
and properly controls the request flow through bypassing
and throttling, which is still beneficial even if GTO improves
the cache behavior. Note that Li [29] proposed a GPU cache
management scheme called PCAL, which is based on CCWS
and activates more warps when NoC is underutilized. As
reported, for 12 cache sensitive benchmarks, under GTO
scheduling policy, PCAL provides 2.8% IPC improvement
over best-SWL on average. With extra traffic optimization,
it acheives 6.4% IPC improvement on average. The main
difference of the PCAL design compared to CBWT is the
bypassing scheme. PCAL bypasses all the requests issued

 0

 0.5

 1

 1.5

 2

LRR GTO

H
M

e
a
n
 o

f
N

o
rm

a
liz

e
d
 I
P
C

Best-SWL
MRPB
CBWT

Figure 18. Average performance improvement of Best-SWL, MRPB, and
CBWT over baseline on HCS benchmarks, using LRR and GTO scheduling
policies.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

BFS KMN PVC SSC PVR IIX WC HarM

N
o
rm

a
liz

e
d

 I
P
C

8.6

PDP-S CBWT

Figure 19. Performance of PDP-S and CBWT normalized to baseline
on HCS benchmarks. The baseline, PDP-S and CBWT all have 64KB L1
cache per SIMT core.

by the warps with lower priority. However, CBWT bypasses
requests based on reuse distance and protects hot cache lines
to take full advantage of the cache capacity.

C. Sensitivity Study

In the future, manufactures may enlarge cache size to sat-
isfy performance requirements of emerging applications. We
also evaluate our design with 64KB L1 caches to give some
insight into the effects on larger cache sizes. Fig. 19 presents
the normalized IPC of PDP-S and CBWT over the baseline,
all with 64KB L1 cache per SIMT core. On average, PDP-S
and CBWT significantly improve system performance by
41.3% and 51.9% respectively. This implies that even if
larger L1 caches might be available in the future, it is still
beneficial to apply advanced cache management schemes.
For some benchmarks, the improvement of CBWT over
PDP-S shrinks because larger L1 caches absorb many more
requests and eliminate a lot of NoC traffic. However, CBWT
still achieves significant improvement for KMN compared to
PDP-S, because KMN generates a huge amount of requests
which still cause NoC congestion even if the L1 cache
size is doubled. The effects of larger MSHR size are also
evaluated (not shown in the figure). Going to 128 MSHRs
per core increases NoC latency, since more requests can be
injected into the network. However, CBWT can adaptively
control NoC flow and its performance is insensitive to the
changes of MSHR size: the average normalized IPC of HCS
benchmarks changes from 1.74 to 1.70.

VII. RELATED WORK

A. CPU Cache Management

Cache management is a well-explored research area for
CPUs. Replacement and bypass policies are related to our
work. Re-reference interval prediction (RRIP) [17] modifies

the LRU and NRU policies to treat misses and hits dif-
ferently so that the reused cache lines are protected from
being replaced by a burst of requests with a very large
reuse interval. Cache bypassing [21], [12], [23] has been
investigated to selectively bypass data in the on-chip caches.
Gaur et al. [12] presented a selective bypass algorithm
based on trip counts and use counts for exclusive LLCs.
Kharbutli et al. [23] introduced a counter-based LLC bypass
algorithm that leverages a prediction table. Dead block
prediction techniques [22], [26], [30] are utilized to guide
replacement and bypass decisions. They generally predict
a cache line is dead and avoid caching it by selecting it
as replacement candidate or bypassing it. PDP cache [11]
introduced protection distance (PD) to protect cache lines
from being replaced. If no unprotected line is found, the
incoming request is bypassed. Dynamic PDP introduces a
sampling module to collect reuse information, and uses a
dedicated pipeline to compute the PD at runtime. Our work
is built on the PDP bypass policy and adapted to GPGPUs.

B. GPU Cache Management

Warp scheduling policies [39], [20] have been investi-
gated as methods to improve cache efficiency in GPUs.
CCWS [39] heuristically schedules warps to alleviate L1
cache contention. The victim tag array is introduced to
collect the lost locality score which indicates how serious
the inter-warp contention is. DAWS [40] refines CCWS
using cache footprint prediction. When severe contention is
detected (some warps lose too much locality) the scheduler
suspends some of the warps (not allowed to issue requests
and stalled). CBWT instead reduces contention through
cache bypassing and requires cheaper hardware. Compared
to pure warp throttling in CCWS, CBWT coordinates by-
passing and warp throttling together and opens up a new
opportunity to improve performance.

MRPB [19] uses FIFO buffers to reorder memory re-
quests, shortening the reuse distance of memory requests be-
fore they are sent to L1 caches. Although CBWT combines
bypassing and warp throttling to preserve locality, it can
work together with MRPB to further improve performance
and energy efficiency. MRPB also employs bypassing to
reduce intra-warp contention in GPU L1 cache. Bypassing
is triggered when resource unavailability stalls happen, i.e.
a burst of requests access the same cache set in a short
period of time, and the target set runs out of available block
to service incoming requests. This bypassing scheme only
works for this special case and it can also be incorporated
into our bypassing framework.

Li [29] proposed a cache bypassing scheme on top of
CCWS, called Priority-based Cache Allocation (PCAL).
PCAL starts from an optimal number of active warps when
bypassing is disabled. It then adds or removes warps ac-
cording to resource utilization. Extra warps are given lower
priority to allocate in the cache to alleviate contention. As

reported, PCAL achieves limited performance improvement
over CCWS. Compared to its warp-level bypass policy,
our bypass policy is a finer-grained scheme at the request-
level. It is more efficient to fill the cache with the hottest
cache lines from all warps, instead of all cache lines from
some prioritized warps. Besides, our design requires lower
hardware overhead, since PCAL is built based on CCWS
which requires a VTA in each L1 cache.

Choi et al. [10] proposed a GPU read-bypassing scheme
which prevents the LLC from being polluted by streaming
data that is consumed only within a CTA and thereby
preserves the LLC for inter-CTA communication. Our work
mainly considers L1 cache and our bypass policy is based on
reuse distance prediction. A unified GPU on-chip memory
design is proposed by Gebhart et al. [14] to satisfy varying
capacity needs across different applications. LLC manage-
ment policies for 3D scene rendering workloads on GPUs
are explored by Gaur et al. [13], while our work focuses
on general purpose applications. Some other work studied
cache management schemes for heterogeneous systems [27],
[31]. Although our work focuses on GPGPUs, it is also
applicable to fused CPU-GPU systems like APUs. It is even
more important for APUs to include contention-resistant or
congestion-resistant techniques because their GPU private
caches are relatively smaller than those of discrete cards.
Compiler or programming techniques for improving GPU
cache performance are also investigated [18], [44], [6]. Al-
though static compiler-directed bypassing could be effective
for regular applications, we provide a hardware dynamic
solution that adapts to different runtime behaviors. This
allows for dynamic adjustment in response to different input
data and application phase behaviors.

C. Thread Throttling

Thread throttling techniques have also been proposed in
multi-threaded CPU systems. Suleman et al. [43] adjust
the number of concurrent threads when the application is
limited by data synchronization or memory bandwidth. In
this framework, a loop starts with some training iterations.
During the training phase, only a single thread is allowed
to run, and the amount of synchronization and bandwidth
utilization are monitored. The framework then calculates the
optimal number of threads according to an analytical model,
and enables multithreading of this number. We do not choose
to restrict single-threaded execution to estimate resource
requirements of a single warp, since it may significantly
hurt performance in a massive-multithreading environment.
Cheng et al. [9] use a thread throttling technique to reduce
memory latency in multicore systems. They also build an
analytical model and limit the number of concurrent memory
tasks to avoid the interference among memory requests.
These are software techniques that make decisions in the
runtime system. Our work also considers memory inter-
ference, but we leverage bypass information and utilize a

simple predictor to make the hardware easy to implement.

VIII. CONCLUSION

GPGPUs are throughput-oriented processors that can hide
memory latency by massive multithreading. However, GPU
caches are not designed with enough awareness of massive
multithreading, leading to poor efficiency. In this paper we
rethink the cache hierarchy and its management trade-offs
in GPGPUs, and show that a specialized cache management
design for GPU computing is important to improve perfor-
mance and energy-efficiency. Cache bypassing is adopted
to enable protection on hot cache lines and alleviate cache
contention. To overcome the limitations of pure bypassing,
our bypass policy is coordinated with warp throttling and
adaptively controls the parallelism when contention or con-
gestion happens. This management scheme is built on top
of a cost-effective hardware design and is simple enough
to implement in real hardware. Experimental results demon-
strate that our design significantly outperforms the baseline
architecture and state-of-the-art management schemes for
cache-sensitive benchmarks.

ACKNOWLEDGEMENT

We thank the entire IMPACT Research Group for their
support and feedback during this work. We also thank the
anonymous reviewers for their insightful comments and
suggestions, and Wenhao Jia from Princeton University for
generously sharing his source code. This work is partly
supported by the 863 Program of China (2012AA010905),
the Starnet Center for Future Architecture Research (C-
FAR), the Defense Advanced Research Projects Agency
under award HR0011-13-2-0014, the DoE Vancouver Project
(DE-FC02-10ER26004/DE-SC0005515), the UIUC CUDA
Center of Excellence, the NSFC (61433019, 61272144),
the HPCL of NUDT (201302-02), the China Scholarship
Council, and the NUDT Graduate Innovation Fund.

REFERENCES

[1] AMD Graphics Cores Next (GCN) Architecture white paper,
AMD, 2012.

[2] N. Anssari, “Using hybrid shared and distributed caching for
mixed-coherency GPU workloads,” Master’s thesis, Univer-
sity of Illinois at Urbana-Champaign, May 2012.

[3] S. S. Baghsorkhi et al., “Efficient performance evaluation of
memory hierarchy for highly multithreaded graphics proces-
sors,” in Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2012.

[4] A. Bakhoda et al., “Analyzing CUDA workloads using a
detailed GPU simulator,” in Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and
Software, 2009.

[5] L. A. Belady, “A study of replacement algorithms for a
virtual-storage computer,” IBM Systems Journal, vol. 5, no. 2,
pp. 78–101, June 1966.

[6] L.-W. Chang et al., “A scalable, numerically stable, high-
performance tridiagonal solver using GPUs,” in Proceedings
of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Nov 2012.

[7] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the IEEE International Sym-
posium on Workload Characterization, 2009.

[8] X. Chen et al., “Adaptive cache bypass and insertion for
many-core accelerators,” in Proceedings of the 2nd Interna-
tional Workshop on Many-core Embedded Systems, 2014.

[9] H.-Y. Cheng et al., “Memory latency reduction via thread
throttling,” in Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010.

[10] H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory
traffic by selective cache management scheme in GPGPUs,”
in Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units, 2012.

[11] N. Duong et al., “Improving cache management policies using
dynamic reuse distances,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture,
2012.

[12] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and
insertion algorithms for exclusive last-level caches,” in Pro-
ceedings of the 38th Annual International Symposium on
Computer Architecture, 2011.

[13] J. Gaur et al., “Efficient management of last-level caches
in graphics processors for 3D scene rendering workloads,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, 2013.

[14] M. Gebhart et al., “Unifying primary cache, scratch, and reg-
ister file memories in a throughput processor,” in Proceedings
of the 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012.

[15] B. He et al., “Mars: A mapreduce framework on graphics
processors,” in Proceedings of the 17th International Confer-
ence on Parallel Architectures and Compilation Techniques,
2008.

[16] B. A. Hechtman et al., “QuickRelease: A throughput-oriented
approach to release consistency on GPUs,” in Proceedings
of the 20th International Symposium on High Performance
Computer Architecture, 2014.

[17] A. Jaleel et al., “High performance cache replacement us-
ing re-reference interval prediction (RRIP),” in Proceedings
of the 37th Annual International Symposium on Computer
Architecture, 2010.

[18] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and
improving the use of demand-fetched caches in GPUs,” in
Proceedings of the 26th ACM International Conference on
Supercomputing, 2012.

[19] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory
request prioritization for massively parallel processors,” in
Proceedings of the 20th International Symposium on High
Performance Computer Architecture, 2014.

[20] A. Jog et al., “OWL: Cooperative thread array aware schedul-
ing techniques for improving GPGPU performance,” in Pro-
ceedings of the 18th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, 2013.

[21] T. L. Johnson and W.-m. W. Hwu, “Run-time adaptive cache
hierarchy management via reference analysis,” in Proceedings
of the 24th Annual International Symposium on Computer
Architecture, 1997.

[22] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead
block prediction for last-level caches,” in Proceedings of
the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, 2010.

[23] M. Kharbutli and D. Solihin, “Counter-based cache replace-
ment and bypassing algorithms,” IEEE Transactions on Com-
puters, vol. 57, no. 4, pp. 433–447, 2008.

[24] The OpenCL C Specification Version: 2.0, Khronos Group,
2013.

[25] G. Kyriazis, “Heterogeneous system architecture: A technical
review,” AMD Fusion Developer Summit, 2012.

[26] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
& dead-block correlating prefetchers,” in Proceedings of the
28th Annual International Symposium on Computer Architec-
ture, 2001.

[27] J. Lee and H. Kim, “TAP: A TLP-aware cache management
policy for a CPU-GPU heterogeneous architecture,” in Pro-
ceedings of the IEEE 18th International Symposium on High-
Performance Computer Architecture, 2012.

[28] J. Leng et al., “GPUWattch: Enabling energy optimizations
in GPGPUs,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013.

[29] D. Li, “Orchestrating thread scheduling and cache manage-
ment to improve memory system throughput in throughput
processors,” Ph.D. dissertation, University of Texas at Austin,
May 2014.

[30] H. Liu et al., “Cache bursts: A new approach for eliminating
dead blocks and increasing cache efficiency,” in Proceedings
of the 41st annual IEEE/ACM International Symposium on
Microarchitecture, 2008.

[31] V. Mekkat et al., “Managing shared last-level cache in a
heterogeneous multicore processor,” in Proceedings of the
22nd International Conference on Parallel Architectures and
Compilation Techniques, 2013.

[32] V. Narasiman et al., “Improving GPU performance via large
warps and two-level warp scheduling,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, 2011.

[33] NVIDIA’s Next Generation CUDATM Compute Architecture:
FermiTM, NVIDIA, 2009.

[34] NVIDIA, “CUDA C/C++ SDK code samples,” 2011.
[Online]. Available: http://developer.nvidia.com/cuda-cc-sdk-
code-samples

[35] NVIDIA’s Next Generation CUDATM Compute Architecture:
KeplerTM GK110, NVIDIA, 2012.

[36] CUDA C Programming Guide v5.5, NVIDIA, 2013.
[37] M. K. Qureshi et al., “Adaptive insertion policies for high

performance caching,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, 2007.

[38] M. Rhu et al., “A locality-aware memory hierarchy for
energy-efficient GPU architectures,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2013.

[39] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
conscious wavefront scheduling,” in Proceedings of the 45th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2012.

[40] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-
aware warp scheduling,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture,
2013.

[41] I. Singh et al., “Cache coherence for GPU architectures,” in
IEEE 19th International Symposium on High Performance
Computer Architecture, 2013.

[42] J. A. Stratton et al., “Parboil: A revised benchmark suite
for scientific and commercial throughput computing,” UIUC,
Tech. Rep. IMPACT-12-01, March 2012.

[43] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-
driven threading: Power-efficient and high-performance exe-
cution of multi-threaded workloads on CMPs,” in Proceedings
of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2008.

[44] X. Xie et al., “An efficient compiler framework for cache
bypassing on GPUs,” in Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, 2013.

