
December 9, 2016 14:54 PPL S0129626416400028 page 1

Parallel Processing Letters
Vol. 26, No. 4 (2016) 1640002 (18 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129626416400028

Evaluating Multiple Streams on Heterogeneous Platforms

Jianbin Fang∗, Peng Zhang, Zhaokui Li, Tao Tang, Xuhao Chen,
Cheng Chen and Canqun Yang

Software Institute, College of Computer,
National University of Defense Technology,

Changsha, 410073, China
∗j.fang@nudt.edu.cn.

Received October 2016
Revised October 2016

Communicated by Guest Editors
Published 21 December 2016

ABSTRACT

Using multiple streams can improve the overall system performance by mitigating the
data transfer overhead on heterogeneous systems. Prior work focuses a lot on GPUs
but little is known about the performance impact on (Intel Xeon) Phi. In this work, we
apply multiple streams into six real-world applications on Phi. We then systematically
evaluate the performance benefits of using multiple streams. The evaluation work is
performed at two levels: the microbenchmarking level and the real-world application
level. Our experimental results at the microbenchmark level show that data transfers
and kernel execution can be overlapped on Phi, while data transfers in both directions
are performed in a serial manner. At the real-world application level, we show that
both overlappable and non-overlappable applications can benefit from using multiple
streams (with an performance improvement of up to 24%). We also quantify how task
granularity and resource granularity impact the overall performance. Finally, we present
a set of heuristics to reduce the search space when determining a proper task granularity
and resource granularity. To conclude, our evaluation work provides lots of insights for
runtime and architecture designers when using multiple streams on Phi.

Keywords: Performance evaluation; multiple streams; resource partitioning; pipelining.

1. Introduction

Heterogeneous platforms are increasingly popular in many application domains [1].

The combination of using a host CPU combined with a specialized processing unit

(e.g., GPGPUs or Intel Xeon Phi) has been shown in many cases to improve the

performance of an application by significant amounts. Typically, the host part of a

heterogeneous platform manages the execution context while the time-consuming

code piece is offloaded to the coprocessor. Leveraging such platforms can not only

1640002-1

http://dx.doi.org/10.1142/S0129626416400028

December 9, 2016 14:54 PPL S0129626416400028 page 2

J. Fang et al.

enable the achievement of high peak performance, but increase the performance per

Watt ratio.

Given a heterogeneous platform, how to realize its performance potentials re-

mains a challenging issue. In addition to procurement cost, significant programming

and porting effort is required to realized the performance benefit [2]. In particu-

lar, programmers need to explicitly move data between host and device over PCIe

before and/or after running kernels. The overhead counts when data transferring

takes a decent amount of time, and determines whether to perform offloading is

worthwhile [3–5]. To hide this overhead, overlapping kernel executions with data

movements is required. To this end, multiple streams (or streaming mechanism)

has been introduced, e.g., CUDA Streams [6], OpenCL Command Queues [7], and

Intel’s hStreams [8]. These implementations of multiple streams spawn more than

one streams/pipelines so that the data movement stage of one pipeline overlap the

kernel execution stage of another.a

Prior works on multiple streams mainly focus on GPUs and the potential of using

multiple streams on GPUs is shown to be significant [9–12]. Liu et al. give a detailed

study into how to achieve optimal task partitions within an analytical framework

for AMD GPUs and NVIDIA GPUs [11]. In [10], the authors model the performance

of asynchronous data transfers of CUDA streams to determine the optimal number

of streams. However, little is known about how multiple streams behave on the OS-

enabled coprocessor such as Intel Xeon Phi. For such coprocessors, programmers

can explicitly map streams to different groups of cores, i.e., they have control of

resource granularity. This control on GPUs is not exposed to programmers. Thus,

how resource granularity impacts the overall performance and how to determine a

proper resource granularity on Phi is unknown.

To answer these questions and gain insights of using multiple streams on Phi,

we provide a systematic performance evaluation. Specifically, we evaluate the per-

formance impact of multiple steams at two levels: the microbenchmarking level

and the real-world application level. At the microbenchmarking level, we measure

the overlapping capability of Phi with multiple streams including ➀ the overlap-

ping of data transfers in both directions, ➁ the overlapping of data transfers with

kernel execution, and ➂ performance potentials from resource partitioning. At the

real-world application level, we first give a performance comparison of applications

with and without using multiple streams, and then provide an in-depth analysis

of the performance factors by using six different real-world applications. Also, we

present a set of heuristics to reduce the huge search space when selecting a proper

task granularity and resource granularity. Our preliminary results on multiple Phis

show a significant performance improvement (over 1 Phi) without code changes

and we conclude that using multiple streams is a promising programming tool for

multiple devices.

aIn the context, the streaming mechanism is synonymous with multiple streams, and thus we refer
the streamed code as code with multiple streams.

1640002-2

December 9, 2016 14:54 PPL S0129626416400028 page 3

Evaluating Multiple Streams on Heterogeneous Platforms

To summarize, our contributions are as follows.

• We apply the streaming mechanism to 7 (6+1) applications representative

of different domains and patterns. With them, we systematically evaluate

the capability of multiple streams on Phi.

• We quantify how each performance factor impacts the application perfor-

mance and perform an in-depth analysis on the performance changes.

• We present a set of guidelines to significantly reduce the search space when

determining task granularity and/or resource granularity, based on our

observations.

• We give a preliminary performance evaluation on multiple MICs with

multiple streams.

The rest of this paper is organized as follows: Section 2 gives a brief description of

multiple streams in terms of temporal resource sharing and spatial resource sharing,

a prototype implementation of multiple streams, and the related work. Section 4

introduces the experimental setup and the benchmarks. We provide a systematic

performance evaluation of multiple streams with microbenchmarks in Section 5 and

with real-world applications in Section 6. Section 7 discusses the performance of

multiple streams on multiple devices and Section 8 concludes the work.

2. Background

In this section, we introduce multiple streams in terms of temporal sharing and

spatial sharing, describe a multiple stream prototype (hStreams), and give the

related work.

2.1. Multiple streams

2.1.1. Temporal sharing

Using multiple streams can overlapping computation and communication (data

transfers), thus realizing the temporal sharing of resources. On the whole, we divide

the offloading process of heterogeneous applications into three stages: (1) move data

from host to device (H2D), (2) kernel execution (EXE), and (3) move data from device

to host (D2H). Overlapping these three stages will significantly improve the overall

performance. Figure 1 shows an illustrative comparison between single stream and

multiple streams. Suppose that these stages consume equal amount of time for a

given task. When using a single stream (i.e., the steps run in a serial manner), the

code takes 6 time units to finish two tasks. Meanwhile, the streamed code will finish

four tasks (using four streams) in the same amount of time.

2.1.2. Spatial sharing

Using multiple streams also enjoys the idea of resource partitioning. That is, to

partition the resource (e.g., processing cores) into multiple groups and map each

1640002-3

December 9, 2016 14:54 PPL S0129626416400028 page 4

J. Fang et al.

Fig. 1. Temporal sharing (Sx represents a stream labeled with x).

stream onto a partition. Therefore, different streams can run on different partitions

concurrently, i.e., resource spatial sharing. Nowadays accelerators have a large num-

ber of processing units that some applications cannot efficiently exploit them for a

given task. Typically, we offload a task and let it occupy all the processing cores.

When using multiple streams, we divide the processing cores into multiple groups

(each group is named as a partition). Figure 2 shows that a device has 16 cores

and is logically divided into four partitions (P0, P1, P2, P3). Then different tasks

are offloaded onto different partitions, e.g., T0, T1, T2, T3 runs on P0, P1, P2, P3,

respectively. In this way, we aim to improve the device utilization.

Fig. 2. Spatial sharing. The circles represent processing cores, Tx represents a task, and Px

represents a partition.

2.2. hStreams

hStreams is an open-source streaming implementation from Intel [13]. At its core

is the resource partitioning mechanism [8]. Figure 3 shows the mapping between

logical concepts and a physical machine (e.g., Intel Xeon Phi). At the physical

level, the whole device is partitioned into multiple groups and thus each group has

several processing cores. At the logical level, a device can be seen as one or more

domains. Each domain contains multiple places, each of which then has multiples

streams. The logical concepts are visible to programmers, while the physical ones

are transparent to them and the mapping between them are automatically handled

by the runtime.

1640002-4

December 9, 2016 14:54 PPL S0129626416400028 page 5

Evaluating Multiple Streams on Heterogeneous Platforms

Fig. 3. hStreams resource view.

hStreams is implemented as a library and provides users with APIs to access

coprocessors/accelerators efficiently. Programming with hStreams resembles that

in CUDA or OpenCL. Programmers have to create the streaming context, move data

between host and device, and invoke kernel execution. And they also have to split

tasks to use multiple streams. Further, hStreams cannot be used alone, but has to

used with other programming models such as OpenMP or Intel TBB.

3. Related work

Our work relates to pipelining, multi-tasking, partitioning workloads between the

host and devices or among devices, modeling streams, and offloading necessity.

Pipelinining is widely used in modern computer architectures [14]. Specifically,

the pipeline stages of an instruction run on different functional units, e.g., arithmetic

units or data loading units. In this way, the stages from different instructions can

occupy the same functional unit in different time slices, thus improving the overall

system throughput. Likewise, a heterogeneous application is divided into stages

(H2D, EXE, D2H), and can exploit the idea of software pipelining on the heterogeneous

platforms (as mentioned in Section 2.1).

Multi-tasking provides concurrent execution of multiple applications (kernels)

on a single device. In [15], Adriaens et al. propose and make the case for a GPU mul-

titasking technique called spatial multitasking. The experimental results show that

the proposed spatial multitasking can obtain a higher performance over cooperative

multitasking. In [16], Wende et al. investigate the concurrent kernel execution mech-

anism that enables multiple small kernels to run concurrently on the Kepler GPUs.

Also, the authors evaluate the Xeon Phi offload models with multi-threaded and

multi-process host applications with concurrent coprocessor offloading [17]. Both

multitasking and multiple streams share the idea of spatial resource sharing. Dif-

ferent from multi-tasking, using multiple streams needs to partition the workload of

a single application (rather than multiple applications) into many tasks. Advanced

streaming also supports multi-tasking, which is beyond the scope of this paper.

Workload Partition: There is a large body of workload partitioning tech-

niques, which intelligently partition the workload between a CPU and a coprocessor

at the level of algorithm [18, 19] or during program execution [20, 21]. Partitioning

1640002-5

December 9, 2016 14:54 PPL S0129626416400028 page 6

J. Fang et al.

workloads aims to use unique architectural strength of processing units and improve

resource utilization [22]. In this work, we focus on how to efficiently utilize the co-

processing device with multiple streams. Ultimately, we need to leverage both work-

load partitioning and multiple streams to minimize the end-to-end execution time.

Partitioning workloads is also required among coprocessors [23]. In [24], Planas et

al. present AMA (Asynchronous Management of Accelerators) that combines sev-

eral ideas of managing and scheduling computations to multiple accelerators. Their

main target is a task-based programming framework of improving the management

of multi-accelerator systems with a minimized overhead. The streaming prototype

used in this paper also supports multi-device programming, which requires no code

modification and thus is transparent to programmers. Using this prototype, we give

our preliminary performance results on a MIC-based heterogeneous platform with

multiple Phis (Section 7).

Multiple Streams Modeling: In [10], Gomez-Luna et al. present performance

models for asynchronous data transfers on different GPU architectures. The mod-

els permit programmers to estimate the optimal number of streams in which the

computation on the GPU should be broken up. In [9], Werkhoven et al. present an

analytical performance model to indicate when to apply which overlapping method

on GPUs. The evaluation results show that the performance model is capable of cor-

rectly classifying the relative performance of the different implementations. In [11],

Liu et al. carry out a systematic investigation into task partitioning to achieve

maximum performance gain for AMD and NVIDIA GPUs. Unlike these works, we

discuss the heuristics of reducing the search space when determining the factors.

Using a model on Phi will be investigated as our future work.

Offloading Necessity: Meswani et al. have developed a framework for predict-

ing the performance of applications executing on accelerators [2]. Using automati-

cally extracted application signatures and a machine profile based on benchmarks,

they aim to predict the application running time rapidly and accurately without go-

ing to the considerable effort of porting and tuning. Evaluating offloading necessity

is a former step of applying multiple streams. In this work, we focus on applying

the streaming mechanism and evaluating its performance impact.

To summarize, using multiple streams enjoys the idea of pipelining and resource

management. Selected applications have been evaluated on GPGPUs, while very

few works are noticed on Intel Xeon Phi. Our work evaluates the streaming mech-

anism on such platforms and its performance impact. In addition, we measure the

overlapping capability with microbenchmarks. To the best of our knowledge, this is

the first systematic performance evaluation of multiple streams on the MIC-based

heterogeneous platform with both microbenchmarks and real-world applications.

4. Experimental methodology

In this section, we first introduce the hardware and software environment, and then

describe the used benchmarks.

1640002-6

December 9, 2016 14:54 PPL S0129626416400028 page 7

Evaluating Multiple Streams on Heterogeneous Platforms

4.1. Platform configurations

The heterogeneous platform used in this work includes a dual-socket Intel Xeon

CPU (12 cores for each socket) and an Intel Xeon 31SP Phi (57 cores for each

card). The host CPUs and the cards are connected by a PCIe connection. As

for the software, the host CPU runs Redhat Linux v7.0 (the kernel version is

3.10.0-123.el7.x86 64), while the coprocessor runs a customized uOS (v2.6.38.8).

Intel’s MPSS (v3.6) is used as the driver and the communication backbone be-

tween the host and the coprocessor. Also, we use Intel’s multi-stream implementa-

tion hStreams (v3.6).

4.2. Benchmarks

4.2.1. Microbenchmark

hBench is a microbenchmark used to quantify the capability of multiple steams

in terms of temporal sharing and spatial sharing. The basic operation of the mi-

crobenchmark is B[i] = A[i]+α. Before kernel execution, we need to move array A

to the coprocessor, and move the output array B back once the kernel finishes exe-

cution. The compute complexity of the kernel execution is controlled by iterations.

Simply, more iterations consume more computational time. The data movements

and kernel execution can be either synchronous or asynchronous. With this mi-

crobenchmark, we aim to evaluate the capability of multiple streams on the Phi

coprocessor.

4.2.2. Real-world applications

We use nine benchmarks, among which, Matrix Multiplication (MM) and

Cholesky Factorization (CF) are from the hStreams SDK while the others are

written by ourselves. Kmeans, Hotspot, Nearest Neighbour (NN), SRAD from the

Rodinia benchmark suite, DCT, PrefixSum (PS) from the AMD SDK, and Dot

Product (DP) from the NVIDIA SDK are used in our work [4]. When porting

them in hStreams, we partition the whole dataset into tiles, each of which repre-

sents a task. Then at least one task is mapped to a stream. The OpenMP regions

are coded as kernels (like CUDA or OpenCL), which will be offloaded onto the

coprocessor/sink side. We run each benchmark for 11 iterations, ignore the first

iteration, and calculate the mean results.

5. Evaluating multiple streams with microbenchmarks

In this section, we evaluate the performance impact of using multiple streams from

the perspective of temporal sharing and spatial sharing. First, we will evaluate

the overlapping of data transfers and computations, and between different data

transfers. Then, we will quantify the performance impact of using the resource

partitioning (i.e., spatial sharing).

1640002-7

December 9, 2016 14:54 PPL S0129626416400028 page 8

J. Fang et al.

5.1. Temporal sharing

5.1.1. Overlapping data transfers

Data transfers can be performed from host to device and vice verse. However,

whether data can be transferred from both directions concurrently depends on the

target platform. Thus, we use hBench to measure the overlapping capability of data

transfers. Specifically, it moves hd blocks of data elements from host to device, and

moves dh blocks of data elements from device to host.

Figure 4(a) shows four cases when dh and hd are assigned with different values,

and the block size is 1 MB. For CC, hd = dh = 16. We first transfer 16 data blocks

from host to device, and then transfer another 16 blocks from device to host. Since

the total amount of data blocks remains constant, the data transfer time does not

change (5.2 ms). For IC, hd increases from 0 to 16 and dh = 16, while for CD, hd = 16

and dh decreases from 16 to 0. We observe that the data transfer time increases

linearly over blocks for IC, while it decreases linearly for CD. For ID, hd increases

from 0 to 16, dh decreases from 16 to 0, and hd + dh = 16. In this case, the total

amount of transferred data keeps constant, and we notice the transfer time also

remains around 2.5 ms. If moving data from host to device could overlap the data

transfers in the other direction, the total transferring time will be dominated by the

one with more data blocks, other than the sum of transferring time. Therefore, we

conclude that data transfers from both directions are performed in a serial manner.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
at

a
tr

an
sf

er
 ti

m
e

[m
s]

#blocks

CC
IC

CD
ID

(a)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

20 25 30 35 40 45 50 55 60

E
xe

cu
tio

n
tim

e
[m

s]

#iterations

Data
Kernel

Data+Kernel
Streamed

Ideal

(b)

Fig. 4. Temporal sharing: (a) How the data transfer time over the number of transferred blocks.
(b) The overlapping extent of data transfers and computation when changing the number of kernel
iterations.

5.1.2. Overlapping data transfers with computation

We then measure the overlapping potential of data transfers and computation with

hBench. Apart from data transfers, we measure the kernel execution time. The

kernel computes B[i] = A[i] + α, where array A is transferred from host to device

before kernel execution while array B is transferred from device to host as the

1640002-8

December 9, 2016 14:54 PPL S0129626416400028 page 9

Evaluating Multiple Streams on Heterogeneous Platforms

output. We control the computation amount by iterating the addition operation

while keeping the size of array A and array B fixed (16 MB).

Figure 4(b) shows the overlapping of data transfers and computation. Data

(the line with triangular marks) represents the data transferring time from both

directions, and Kernel (the line with circle marks) represents the kernel execution

time. Since the size of arrayA and B is constant, the total transferring time does not

change with the number of kernel iterations. By contrast, the kernel execution time

increases linearly as shown in Figure 4(b). These two lines intersect when using

40 iterations in the kernel. When using less than 40 iterations, the performance

is dominated by data transfers (i.e., dominant transfers), and when using over

40 iterations, the performance is dominated by kernel execution (i.e., dominant

kernel) [10]. We expect that the line with cross marks in Figure 4(b) represents a

full overlap of data transfers and kernel execution. However, the measured execution

time (the line with diamond marks) is longer than the expected execution time,

illustrating the difficulty of achieving a full overlap.

5.2. Spatial sharing

We further use hBench to evaluate the performance impact of resource granularity.

Specifically, we partition array A and B into 128 blocks, and use 100 kernel iter-

ations. Figure 5 shows how the kernel execution (excluding the data transferring

time) changes over resource granularity. We observe that, for a given task gran-

ularity, the execution time first decreases and then increases when changing the

number of partitions. This is because partitioning resources can lead to a better

utilization. Meanwhile, using too many partitions (and streams) also introduces

extra management overheads.

The ref bar of Figure 5 shows the execution time of the non-streamed non-tiled

code. We see that it is lower than that of the tiled streamed code. In other words,

simply partitioning the hardware resources brings no performance improvement

for the kernel execution. The root reason is that we explicitly make a synchro-

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64 128 ref

E
xe

cu
tio

n
tim

e
[m

s]

#partitions

Fig. 5. How resource granularity impacts the overall performance. The ref bar represents the
execution time of the non-streamed non-tiled code.

1640002-9

December 9, 2016 14:54 PPL S0129626416400028 page 10

J. Fang et al.

nization between data transfers and kernel execution, and the application is non-

overlappable. Our experimental results in Figure 4(b) and Figure 5 show that

using multiple streams is beneficial only when the target application is overlap-

pable. Among the aforementioned applications in Section 4.2, MM, CF, NN, DCT, PS,

and DP are overlappable, while Hotspot, Kmeans, and SRAD are non-overlappable.

Therefore, we expect that the first three applications can benefit from temporal

and spatial sharing of hardware resources.

6. Evaluating multiple streams with real-world applications

We use nine real-world applications to evaluate the performance impact of multiple

streams. We first give an overall performance comparison of non-streamed code

and streamed code. Then we analyze the performance gaps between them and the

impacting factors.

6.1. An overall performance comparison

In this section, we will give an overall comparison between the streamed code (w/)

and the non-streamed version (w/o). Note that the non-streamed version uses a

single stream and a single tile/task. Meanwhile, the whole datasets of streamed code

are partitioned into a large number of tasks, where the task granularity is controlled

by the number of tiles. Then the tasks are mapped to streams and each stream runs

multiple tasks. At the low level, the hardware resources (i.e., processing cores) are

partitioned into group, and the number of processing cores per partition is referred

to be as resource granularity. In the experiments, we empirically enumerate all the

possible values of task granularity and resource granularity to obtain the optimal

performance.

Figure 6 shows the overall performance comparison. For MM, CF, Kmeans, NN, DCT,

PS and DP, we see that the streamed code outperforms the non-streamed code for all

the used datasets, with an average performance improvement of 8.3%, 24.1%, 24.1%,

9.2%, 4.5%, 10% and 6.1%, respectively. Among the seven applications, six (MM, CF,

NN, DCT, PS, DP) can overlap the data transfer stage and the kernel execution stage,

i.e., they are overlappable. Although Kmeans is an non-overlappable application,

it can benefit from the reduced memory allocation and deallocation during kernel

execution by employing multiple streams.

Moreover, we see that using multiple streams brings no performance change for

Hotspot. This is because data transfers and kernel execution of this application

cannot be overlapped. Partitioning a large workload into several small workloads

which are then mapped onto different resource partitions, gives no performance

boost. Also, due to the overheads of managing streams, we notice that the streamed

code runs slightly slower than the non-streamed code for the small datasets.

For SRAD, the streamed code runs slower than the non-streamed code for small

datasets. The reason resembles that of the Hotspot. While the streamed version of

SRAD outperforms the non-streamed one for large datasets. This case is out of our

1640002-10

December 9, 2016 14:54 PPL S0129626416400028 page 11

Evaluating Multiple Streams on Heterogeneous Platforms

 256

 512

 1024

20002400026000280002100002120002

G
F

LO
P

S

datasets

w/o w/

(a) MM.

 128

 256

 512

7200296002120002144002168002192002

G
F

LO
P

S

datasets

w/o w/

(b) CF.

 0.25

 0.5

 1

 2

 4

 8

140K 280K 560K 1120K2240K

E
xe

cu
tio

n
tim

e
[s

]

datasets

w/o w/

(c) Kmeans.

 0.5

 1

 2

 4

 8

 16

 32

 64

10242 20482 40962 81922 163842

E
xe

cu
tio

n
tim

e
[s

]

datasets

w/o w/

(d) Hotspot.

 2

 4

 8

 16

 32

 64

128k 256k 512k 1024k 2048k

E
xe

cu
tio

n
tim

e
[m

s]

datasets

w/o w/

(e) NN.

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

10002 20002 40002 50002 100002

E
xe

cu
tio

n
tim

e
[s

]

datasets

w/o w/

(f) SRAD.

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

1024 2048 4096 8192 16384

E
xe

cu
tio

n
tim

e
[m

s]

datasets

w/o w/

(g) DCT.

 1

 2

 4

 8

 16

 32

214 216 218 220 222

E
xe

cu
tio

n
tim

e
[m

s]

datasets

w/o w/

(h) PS.

 0.125

 0.25

 0.5

 1

4 6 8 10 12

E
xe

cu
tio

n
tim

e
[s

]

datasets(x107)

w/o w/

(i) DP.

Fig. 6. A performance comparison between using a single stream and multiple streams. For
Kmeans, the number of centroid is 8, and we run 100 iterations before reaching convergence. For
Hotspot, we run 50 simulation iterations. For NN, the target coordination is (40, 120), and the
number of nearest neighbors to find is 10. For SRAD, λ = 0.5, and we run the kernel for 100
iterations.

expectation. Theoretically, it should not occur due to its non-overlappable feature.

The reason is still under investigation.

6.2. Performance analysis

6.2.1. How the number of partitions impacts performance?

Figure 7 shows how the overall performance changes with the number of partitions

(P) when fixing task granularity (T). We observe that the performance varies sig-

nificantly over P for the nine applications. For MM and CF, the benchmarks run much

faster on some points than the others. On these points, 56 is a multiple of P , i.e.,

P ∈ {2, 4, 7, 8, 14, 28, 56}. Each 31SP Phi has 57 cores and one is reserved for the

uOS. Thus, we have 224 (56× 4) available threads. When mapping N streams onto

a Phi, each stream will occupy 224/N threads. It is possible that two streams would

1640002-11

December 9, 2016 14:54 PPL S0129626416400028 page 12

J. Fang et al.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

G
F

lo
ps

/s

partitions

(a) MM.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

G
F

LO
P

S

partitions

(b) CF.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[s

]

partitions

(c) Kmeans.

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[m

s]

partitions

(d) Hotspot.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[m

s]

partitions

(e) NN.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[s

]

partitions

(f) SRAD.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[s

]

partitions

(g) DCT.

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[m

s]

partitions

(h) PS.

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0 10 20 30 40 50

E
xe

cu
tio

n
tim

e
[s

]

partitions

(i) DP.

Fig. 7. How the performance changes with the number of partitions. For Matrix Multiplication,
D = 6000, and T = 500 × 500; For Cholesky Factorization, D = 9600, T = 800 × 800, and we
use the column-major layout. For Kmeans, D = 1120000, T = 20000, and we run 100 iterations
before reaching convergence. For Hotspot, the grid size D is 16384× 16384, T = 1024× 1024, and
we run 50 iterations. For NN, the number of records D is 5242880, T = 512, and the number of
nearest neighbors to find is 10. For SRAD, D = 10000 × 10000, T = 20 × 20, λ = 0.5, and we
run the kernel for 100 iterations. For DCT, D = 8192 and T = 16. For PrefixSum, D = 222 and
T = 64, for DotProduct, D = 8× 107 and T = 64.

share the same processing core and thus incur contention for shared resources such

as caches. When the Phi is partitioned into groups, using these values within the

set can avoid that the threads from the same core are partitioned into different

streams. Therefore, we recommend using the number of partitions within the set

{2, 4, 7, 8, 14, 28, 56} for such applications.

For Kmeans, the execution time drops over the number of partitions (shown in

Figure 7(c)). When looking into the code, we observe Kmeans has to allocate and

free temporal memory space dynamically in each iteration. This overhead increases

linearly with the number of threads and decreases with the number of streams

accordingly. Thus, the performance trend of the non-overlappable Kmeans does not

fit the one shown in Figure 5.

1640002-12

December 9, 2016 14:54 PPL S0129626416400028 page 13

Evaluating Multiple Streams on Heterogeneous Platforms

For Hotspot, we see that the execution time roughly matches the trend shown

in Figure 5. However, there are some fluctuations when changing the number of

partitions. Particularly, when the number of partitions ranges from 33 to 37, the

simulation time reaches its lowest points. At this time, the number of threads per

partition is 6 or 7, and each partition will use threads on at most two processing

cores. We believe this configuration will lead to a good cache utilization.

Figure 7(e) shows how the number of partitions impacts the overall performance

of NN. We see that the execution time first decreases sharply over partitions (and

streams) til P = 4. This is due to the fact that using more streams will create more

opportunities of overlapping data transfers and kernel execution. Thereafter, the

execution time remains around 25 ms. This overlappable application can use both

temporal sharing and spatial sharing.

Figure 7(f) shows how the execution time changes over partitions for SRAD. On

the whole, we notice that the performance first increases and then decreases, which

roughly fits the trend presented in Figure 5 of Section 5.2. This is because this

application consists of several kernels between which an explicit synchronization is

needed. Thus, the application can only exploit spatial sharing of multiple streams.

From Figures 7(g)–7(i), we see that execution time first decreases then increases

over P , which fits the trend shown in Figure 5.2. For DCT, we reach the lowest point

when P = 16. This is because T = 16 and some partitions will stay idle when using

more than streams. The streamed PrefixSum reaches the optimal performance when

P = 4. In such a case, both tasks and resources can be evenly partitioned, which

leads to a good load balance. For DotProduct, the performance varies slightly when

changing the number of resource partitions.

6.2.2. How the number of tiles impacts performance?

Figure 8 shows how the performance changes with the number of tiles (T) for

the nine applications. Overall, the achieved performance first increases and then

decreases (note the different metrics between MM, CF and the other four applications).

In particular, we observe most applications run the fastest when T = 4. With one

task, the performance decreases sharply. This is due to the fact that we partition the

56 cores of a Phi into four groups (P = 4), and mapping the tile to a partition will

leave the other partitions idle. Further, using a larger T (i.e., more tiles but each tile

is smaller) will have more pipelining opportunities to overlap stalls. But using a large

T introduces extra control overheads and incurs a relatively low resource utilization.

Therefore, further increasing the number of tasks leads to a worse performance as

shown in Figure 8.

In addition, selecting T for CF and SRAD differs from the other applications.

Their achieved performance reaches the optimal when T = 100, and T = 400,

respectively. Different from other applications, these two contain several kernels

which could introduce context interference. Furthermore, we see that NN obtains a

similar performance between T = 1 and T = 4. This is because NN’s performance

1640002-13

December 9, 2016 14:54 PPL S0129626416400028 page 14

J. Fang et al.

 0

 100

 200

 300

 400

 500

 600

 700

1 4 9 16 25 36 100 144 255 400

G
F

lo
ps

/s

The number of tiles

(a) MM.

 0

 50

 100

 150

 200

 250

 300

 350

 400

4 9 16 25 36 64 100 144 225 256 400

G
F

lo
ps

/s

The number of tiles

(b) CF.

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 20 28 32 56 112 224

E
xe

cu
tio

n
tim

e
[s

]

The number of tiles

(c) Kmeans.

 0

 50

 100

 150

 200

 250

 300

1
2

2
2

4
2

8
2

16
2

32
2

43
2

64
2

86
2

128
2

256
2

E
xe

cu
tio

n
tim

e
[s

]

The number of tiles

(d) Hotspot.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

E
xe

cu
tio

n
tim

e
[m

s]

The number of tiles

(e) NN.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

1
2

2
2

3
2

4
2

5
2

10
2

13
2

20
2

25
2

50
2

100
2

E
xe

cu
tio

n
tim

e
[s

]

The number of tiles

(f) SRAD.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

20 21 22 23 24 25 26 27

E
xe

cu
tio

n
tim

e
[s

]

The number of tiles

(g) DCT.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

20 22 24 26 28 210 212

E
xe

cu
tio

n
tim

e
[s

]

The number of tiles

(h) PS.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

20 21 22 23 24 25 26

E
xe

cu
tio

n
tim

e
[s

]

The number of tiles

(i) DP.

Fig. 8. How the performance changes with the number of tiles. For Matrix Multiplication, D =
6000, and P = 4; For Cholesky Factorization, D = 9600, P = 4, and we use the column-major
layout. For Kmeans, D = 1120000, P = 4, the number of centroid is 8, and we run 100 iterations
before reaching convergence. For Hotspot, the grid size D is 16384× 16384, P = 4, and we run 50
iterations. For NN, the number of records D is 5242880, P = 512, the target coordination is (40,
120), and the number of nearest neighbors to find is 10. For SRAD, D = 10000 × 10000, P = 4,
λ = 0.5, and we run the kernel for 100 iterations. For DCT, D = 8192, P = 4. For PrefixSum,
D = 222 and P = 4. For DotProduct, D = 8× 107 and P = 4.

is bounded by data transfers and creating multiple streams to achieve overlapping

brings a slight difference to the overall performance. For DP, we notice that the

execution time decreases with over T , but we expect an increase with more tiles.

6.3. Discussion

6.3.1. Using occasion

Our experimental results show that using multiple streams is beneficial only when

the applications are overlappable. For such applications, exploiting temporal sharing

of hardware resources will overlap data transfers and kernel execution, and thus

1640002-14

December 9, 2016 14:54 PPL S0129626416400028 page 15

Evaluating Multiple Streams on Heterogeneous Platforms

speedup the execution process. Further, using spatial sharing of hardware resources

will increase the resource utilization. Note that only leveraging spatial sharing might

not lead to a performance improvement for the non-overlappable applications.

Moreover, we observe several special cases that using multiple streams is benefi-

cial for the non-overlappable applications (e.g., Kmeans and SRAD). This is because

of the extra kernel overheads, e.g., allocating/deallocating temporal memory space.

Therefore, we have to consider such application-specific characteristics when using

multiple streams.

6.3.2. Reducing the search space

As can be seen from Section 6.2, resource granularity (P) and task granularity

(T) have a significant impact on the overall performance. For a given application,

maximizing the overall performance need search for the optimal value for each

factor. This will consume a huge amount of time. Hereby we discuss how to prune

the search space when selecting a proper value for P and T .

As indicated in Figures 7(a) and 7(b), we obtain that P ∈ {2, 4, 7, 8, 14, 28, 56}
and such values will avoid that the threads from the same core are mapped to

different streams. The results of the other overlappable application (NN) show that

when P ≥ 4, the performance remains around 25 ms. Therefore, we should focus

our attention on these special numbers.

When determining the number of tiles, the first priority is to guarantee load

balancing. This is particularly true when T < P , i.e., the resource is under-utilized

(Figure 8). Therefore, we guarantee that T = m·P , wherem ∈ {1, 2, 3, . . .}. Besides,
T should not be too large to achieve a good resource utilization, and it should not

be too small to exploit the pipelining potentials.

To summarize, to achieve the optimal performance for will incur a huge search

space. Our guidelines reduce the search space significantly. To further reduce the

search space, we need a fine analytical performance model [10, 9, 11]. Alternatively,

we plan to use machine learning techniques to obtain a proper value for P and T .

7. Preliminary results on multiple MICs

Current large-scale computing systems often employ multiple accelerators to guar-

antee its peak performance. Thus, how to use multiple devices simultaneously

becomes an issue. Using multiple streams seems a promising tool. For example,

hStreams provides a unified resource management layer of all the Phis (MICs) and

its runtime automatically map the streams to the underlying hardware domain. In

this way, a streamed code can run on multiple Phis without code modifications. In

this section, we discuss the preliminary results on the heterogeneous platforms with

multiple Phis.

Figure 9 shows the CF’s performance on one and two Phis. We see that the

achieved performance increases significantly with two devices than with one device,

but the performance is still lower than the projected performance of two Phis. This

1640002-15

December 9, 2016 14:54 PPL S0129626416400028 page 16

J. Fang et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

14000 16000

G
F

LO
P

S

datasets

1-mic
2-mics

projected

Fig. 9. How Cholesky Factorization performs on multiple MICs for datasets 14000 × 14000 and
16000 × 16000.

is because partitioning workloads among devices with separate memory space needs

to transfer more data blocks than that using only one device. Also, CF contains sev-

eral kernels and explicit synchronizations are required between them. When using

multiple Phis, synchronizations between streams from different Phis might intro-

duce extra overheads. To gain more insights, we would like to run more experiments

with a wide range of applications in future.

8. Conclusion

The potential of using multiple streams on the heterogeneous platforms is expected

to be significant for a wide range of applications. In this paper, we perform a system-

atic performance evaluation of multiple streams on the MIC-based heterogeneous

platforms. Our experimental results at the microbenchmarking level and the real-

world application level lead to the following observations/conclusions: (1) The data

transfers in both directions on Phi cannot run concurrently; (2) Data transferring

on Phi overlaps kernel execution, but the full overlap seems not achievable; (3) Us-

ing multiple streams might not lead to a performance increase only in the presence

of spatial resource sharing; (4) Being overlappable is a must for benefits when us-

ing multiple streams; (5) Both task granularity and resource granularity have a

large impact on the overall performance; (6) Some non-overlappable application

still enjoy a performance improvement by using multiple streams.

In the future, we would like to investigate how to transform the non-overlappable

applications to overlappable applications. Further, we will leverage machine learning

techniques to obtain a proper task and resource granularity. Also, we plan to further

evaluate the performance impact on multiple Phis.

Acknowledgment

We would like to thank the authors from the Rodinia benchmark suite for their

valuable benchmarks. We are also thankful to the reviewers for their constructive

1640002-16

December 9, 2016 14:54 PPL S0129626416400028 page 17

Evaluating Multiple Streams on Heterogeneous Platforms

comments. This work was partially funded by the National Natural Science Founda-

tion of China under Grant Nos. 61402488, 61502514 and 61602501, the National Key

Research and Development Program of China under Grant No. 2016YFB0200400.

References

[1] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU
Computing,” Proceedings of the IEEE, vol. 96, pp. 879–899, May 2008.

[2] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and S. Poole,
“Modeling and predicting performance of high performance computing applications
on hardware accelerators,” International Journal of High Performance Computing
Applications, vol. 27, pp. 89–108, May 2013.

[3] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate CPU vs.
GPU performance without the answer,” in Performance Analysis of Systems and
Software (ISPASS), 2011 IEEE International Symposium on, pp. 134–144, IEEE,
Apr. 2011.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, pp. 44–54, IEEE,
Oct. 2009.

[5] M. Boyer, J. Meng, and K. Kumaran, “Improving GPU performance prediction with
data transfer modeling,” in Parallel and Distributed Processing Symposium Work-
shops & PhD Forum (IPDPSW), 2013 IEEE 27th International, pp. 1097–1106,
IEEE, May 2013.

[6] NVIDIA Inc., CUDA C Best Practices Guide Version 7.0, March 2015.
[7] The Khronos OpenCL Working Group, “OpenCL – The open standard for parallel

programming of heterogeneous systems.” http://www.khronos.org/opencl/, January
2016.

[8] Intel Inc., hStreams Architecture document for Intel MPSS 3.5, April 2015.
[9] B. Van Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal, “Performance models

for CPU-GPU data transfers,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, pp. 11–20, IEEE, May 2014.

[10] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil, “Performance
models for asynchronous data transfers on consumer graphics processing units,” Jour-
nal of Parallel and Distributed Computing, vol. 72, pp. 1117–1126, Sept. 2012.

[11] B. Liu, W. Qiu, L. Jiang, and Z. Gong, “Software pipelining for graphic processing
unit acceleration: Partition, scheduling and granularity,” International Journal of
High Performance Computing Applications, DOI: 10.1177/1094342015585845, June
2015.

[12] F. Ino, S. Nakagawa, and K. Hagihara, “Gpu-chariot: A programming framework for
stream applications running on multi-gpu systems,” IEICE Transactions, vol. 96-D,
no. 12, pp. 2604–2616, 2013.

[13] C. J. Newburn, G. Bansal, M. Wood, L. Crivelli, J. Planas, A. Duran, P. Souza,
L. Borges, P. Luszczek, S. Tomov, J. Dongarra, H. Anzt, M. Gates, A. Haidar, Y. Jia,
K. Kabir, I. Yamazaki, and J. Labarta, “Heterogeneous streaming,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops, IPDPS
Workshops 2016, Chicago, IL, USA, May 23-27, 2016, pp. 611–620, 2016.

[14] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 4th Edition. Morgan Kaufmann, Sept. 2006.

[15] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case for GPGPU

1640002-17

http://www.khronos.org/opencl/

December 9, 2016 14:54 PPL S0129626416400028 page 18

J. Fang et al.

spatial multitasking,” in High Performance Computer Architecture (HPCA), 2012
IEEE 18th International Symposium on, pp. 1–12, IEEE, Feb. 2012.

[16] F. Wende, T. Steinke, and F. Cordes, “Multi-threaded kernel offloading to GPGPU
using Hyper-Q on kepler architecture,” Tech. Rep. 14-19, ZIB, Takustr.7, 14195
Berlin, 2014.

[17] F. Wende, T. Steinke, and F. Cordes, “Concurrent kernel execution on xeon phi
within parallel heterogeneous workloads,” in Euro-Par 2014 Parallel Processing
(F. Silva, I. Dutra, and V. Santos Costa, eds.), vol. 8632 of Lecture Notes in Computer
Science, pp. 788–799, Springer International Publishing, 2014.

[18] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu, “Adaptive opti-
mization for petascale heterogeneous CPU/GPU computing,” in Cluster Computing
(CLUSTER), 2010 IEEE International Conference on, pp. 19–28, IEEE, 2010.

[19] C. Yang, W. Xue, H. Fu, L. Gan, L. Li, Y. Xu, Y. Lu, J. Sun, G. Yang, and W. Zheng,
“A peta-scalable CPU-GPU algorithm for global atmospheric simulations,” in
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, (New York, NY, USA), pp. 1–12, ACM, 2013.

[20] H. Takizawa, K. Sato, and H. Kobayashi, “SPRAT: Runtime processor selection for
energy-aware computing,” in Cluster Computing, 2008 IEEE International Confer-
ence on, pp. 386–393, IEEE, 2008.

[21] J. A. Pienaar, A. Raghunathan, and S. Chakradhar, “MDR: Performance model
driven runtime for heterogeneous parallel platforms,” in Proceedings of the Interna-
tional Conference on Supercomputing, ICS ’11, (New York, NY, USA), pp. 225–234,
ACM, 2011.

[22] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous computing tech-
niques,” ACM Comput. Surv., vol. 47, July 2015.

[23] K. Spafford, J. Meredith, and J. Vetter, “Maestro: Data orchestration and tuning for
OpenCL devices,” in Euro-Par 2010 – Parallel Processing (P. D’Ambra, M. Guarra-
cino, and D. Talia, eds.), vol. 6272 of Lecture Notes in Computer Science, pp. 275–286,
Springer Berlin Heidelberg, 2010.

[24] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, “AMA: Asynchronous man-
agement of accelerators for task-based programming models,” Procedia Computer
Science, vol. 51, pp. 130–139, 2015.

1640002-18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

