Speedcode: Software Performance Engineering
Education via the Coding of Didactic Exercises

Tim Kaler Xuhao Chen Brian Wheatman
MIT CSAIL MIT CSAIL Johns Hopkins University
tfk@mit.edu  xchen@csail.mit.edu wheatman @cs.jhu.edu

Tao B. Schardl
MIT CSAIL
neboat@mit.edu

Abstract—This paper introduces Speedcode, an online pro-
gramming platform that aims to improve the accessibility of soft-
ware performance-engineering education. At its core, Speedcode
provides a platform that lets users gain hands-on experience in
software performance engineering and parallel programming by
completing short programming exercises.

Speedcode challenges users to develop fast multicore solutions
for short programming problems and evaluates their code’s
performance and scalability in a quiesced cloud environment.
Speedcode supports parallel programming using OpenCilk, a
task-parallel computing platform that is open-source and easy
to program, teach and use for research.

Speedcode aims to reduce barriers to learning and teaching
software performance engineering. It allows users to run and
evaluate their code on modern multicore machines from their own
computer without installing any software. This provides users
an easy introduction to the topic, and enables teachers to more
easily incorporate lessons on software performance engineering
into their courses without incurring the onerous overhead of
needing to setup computing environments for their students.

I. INTRODUCTION

Modern software performance engineering is becoming an
increasingly vital skill as Moore’s Law and the days of
free performance improvements come to an end. Many of
the innovations that have been improving the capabilities of
hardware over the past decade, such as larger numbers of
cores and large vector units, add significant complexity to the
traditional programming model and are consequently difficult
to program by non-experts. These more complex programming
models place a growing demand on educators to prepare
students with the skills required to understand and optimize
for software performance in the modern computing landscape.

Despite the growing importance of software performance
engineering, there are few opportunities for students to pickup
these skills. Software performance engineering is rarely taught
in undergraduate computer science programs, and there are
few informal avenues for novice programmers to pickup these
skills outside of the classroom. This situation is in stark
contrast with other aspects of the computer science curriculum
like algorithms, data structures, and machine learning where
gaining hands-on experience is relatively accessible.

Dorothy Curtis
MIT CSAIL
dcurtis @csail.mit.edu

Bruce Hoppe
Connective Associates
behoppe333 @gmail.com

Charles E. Leiserson
MIT CSAIL
cel@mit.edu

Online programming platforms, the most popular of which
is LeetCode [1], have become widely-used resources for indi-
viduals wishing to improve their proficiency with algorithms,
data structures, and programming. Sites like LeetCode are
popular with undergraduates in computer science programs,
and even popular among more experienced software engineers
wishing to refresh or sharpen their skills!.

Software performance engineering, however, is not
presently easy to learn (or teach) via casual practice. One
reason for this difficulty is that the simple task of collecting
reliable measurements of a code’s performance can be
difficult when operating in noisy computing environments
(e.g., one’s personal computer or on a shared remote machine
in the cloud). Another major difficulty is the large overhead
required to setup and learn how to use various “tools of the
trade” that are needed to analyze software performance in
a principled fashion. Existing online platforms for teaching
parallel and distributed computing, such as OnRamp [14],
have done much to alleviate this burden in classroom settings,
but are typically not broadly accessible for informal learning.

This paper reports on our ongoing efforts to improve the
accessibility of software performance-engineering education
through the development of an online programming platform
called Speedcode? that supports both parallelism and quiesced
performance analysis. Speedcode allows users to develop fast
multicore solutions to short programming problems and evalu-
ate the performance and scalability of their solutions in a qui-
esced cloud environment, with no local installation required.
Speedcode supports parallel programming using OpenCilk, a
task-parallel computing platform that is open-source [2] and
easy to program, teach and use for research [24].

The remainder of the paper is organized as follows. Sec-
tion I describes the pedagogy and technologies used by
Speedcode to teach parallel programming. Section III de-
scribes the design of the Speedcode programming platform
and illustrates the tools it provides to make it easier to
write and analyze parallel codes. Section IV describes our

LA search for "leetcode” on TeamBlind, an online professional community,
returned over 28,000 topics on the use of Leetcode for interview preparation.
Zhttp://speedcode.org



preliminary experiences using the Speedcode platform in
classrooms, tutorials, and other small-group settings to teach
concepts in parallel computing. Section V discusses our plans
for developing well-organized curriculums to teach software
performance engineering through the Speedcode platform.

II. PEDAGOGY FOR TEACHING PARALLEL PROGRAMMING

Speedcode’s approach follows established principles from
the parallel computing community for developing parallel
codes that are easy to write, debug, and analyze.

A. Deterministic parallelism.

Researchers over multiple decades have advocated for the
use of “deterministic parallelism” [9], [13], [17], [22], [25]
to reduce the difficulty of parallel programming. With a deter-
ministic parallel program, the programmer observes no logical
concurrency, that is, no nondeterminacy in the behavior of the
program due to the relative and nondeterministic timing of
communicating processes such as when one process arrives
at a lock before another. The semantics of a deterministic
parallel program are therefore serial, and reasoning about such
a program’s correctness, at least in theory, is no harder than
reasoning about the correctness of a serial program. Testing,
debugging, and formal verification are simplified, because
there is no need to consider all possible relative timings
(interleavings) of operations on shared mutable data.

B. Fork-join parallelism.

Programming models such as fork-join parallelism have
made significant progress towards easing the difficulty of
writing correct and deterministic parallel codes. Fork-join
parallelism is usually implemented using work-stealing [8],
where worker threads in the runtime system coordinate to load-
balance the computation, as in the various Cilk dialects [15],
[20], [24], Fortress [3], Habanero [5], HotSLAW [21], Java
Fork/Join Framework [18], OpenMP [4], Task Parallel Li-
brary [19], and Threading Building Blocks (TBB) [23]. In this
model, subroutines can be spawned in parallel, generating a
series-parallel execution dag in which the synchronization of
subtasks is managed by the runtime system. Constructs such
as parallel_for can be implemented as syntactic sugar
on top of the fork-join model. As long as the parallel program
contains no determinacy races [13], the program is determinis-
tic. Moreover, efficient tools exist that are guaranteed to detect
determinacy races or validate their absence [13], [24].

C. Work-span analysis

Work-span analysis [11, Ch. 27] is a technique for ana-
lyzing the theoretical parallelism in a parallel program and
predict its wall-clock execution time on P-processors. Given
an execution of a parallel program, one defines the work
Ty to be the total number of instructions executed and the
span (or depth) T,, to be the total number of instructions
executed on the program’s critical path. Conceptually, the work
of a program is its sequential runtime and its span is the
program’s ideal runtime on an infinite number of processors.

The parallelism of a program can be computed as the ratio
T, /Ts of the work and span. Greedy schedulers [10], [12],
[16] can execute a program on P processors in time 71p
satisfying max{T1/P,Ts} <Tp <T1/P + T on an ideal
parallel computer. Similar bounds can be achieved when using
randomized work-stealing schedulers [7], [8].

D. Fork-join parallel programming using OpenCilk

Speedcode employs technologies developed by the open-
source OpenCilk project [24]. OpenCilk provides a compiler,
programming model, and program analysis tools that facilitate
the development of deterministic fork-join parallel codes that
are fast in both theory and practice. Importantly, the Cilk
programming model has serial-semantics for race-free parallel
programs, which makes it easier for those new to parallel
computing to understand and debug their code’s correctness.

Notably, OpenCilk provides two high-quality tools that
make it easier to teach parallel programming. The first is the
Cilksan race-detector which reports determinacy races that
exist when a code is run on a given input, and verifies the
absence of races when the code is race-free. The second is the
Cilkscale scalability analyzer which measures the work 73 and
span T, of a program execution to compute the parallelism
T, /T of a submitted solution.

III. SPEEDCODE ONLINE LEARNING PLATFORM

The current prototype of Speedcode provides an online
development environment that is integrated with OpenCilk
(and related tools) to support fork-join parallel programming,
scalability analysis, and race detection. The remainder of this
section explains how these tools work within Speedcode.

Speedcode consists of a collection of short programming
exercises® that are written and evaluated via a front-end web
interface. Each problem has a short description or prompt that
includes details about the problem, the expected inputs, and
(in some cases) suggestions on how to optimize the reference
solution. Correct starter code is given for each problem.

User interface. Users solve Speedcode problems using a
web front-end interface. Figure 1 provides an illustration of
the main user-interface for submitting and evaluating solutions
to Speedcode problems. Presently, Speedcode displays reports
that include details on correctness, benchmarks, parallel scal-
ability, and race detection. As additional tools are integrated
into Speedcode, we envision a modular user interface where
the user or problem developer can choose which tools and
reports are generated and displayed.

Execution environment. Submitted problems are compiled
and run on a dynamically scaled pool of quiesced multicore
servers. Presently, Speedcode employs 8-core multicore ma-
chines with 2nd generation Intel Xeon Cascade Lake proces-
sors. User code is benchmarked, transparently to the user, via a
micro-benchmarking library that allows for nanosecond resolu-
tion runtime measurements. The use of quiesced machines and
this principled benchmarking methodology allows students to

3 As of 1/28/2024 there are 18 programming exercises on Speedcode, most
of which benefit from the use of task-paralellism.



Test Results Source

Correctness 3
Test Results (PASSED) s

Expand to view defails

Benchmark u
You beat 2 out of 2 challenge codes. 18

S 10,000% 16

5,000% w1 ]

Speed

Parallelism Analysis
Race detector (0 races)

Expand to view details

& Editor Settings

Scalability Analysis (Cilkscale)
=]

Measured parallelism: 34.0779 —

e
and Benchmarks #ses

Speedup

nsfop | oo/s | err% |
|

total |
<l

180,311,624.28 | 555 | ek | a.se |
1,575, 291.16 | ses.as | e.sx | 105 |
15,380,727.77 | 5oz | e.a% | 108 |

100.0% |
B s,118.5% |
2 1,172.3% |

Fig. 1: User interface for a Speedcode problem. Left: the cor-
rectness, benchmark, and parallelism reports for a submission.
Right: the code editor and program output.

focus on improving performance, as the measurement problem
is taken care of by the Speedcode platform.

Benchmarks and challenge problems. The performance
of the submitted code is measured using a set of test inputs
provided by the problem developer. A user’s goal, when
solving a Speedcode problem, is to improve the performance
of a correct reference implementation. To provide the user
intermediate goals, the benchmark results of a user’s submitted
code are compared to a list of “challenge codes” which
achieve varied levels of performance. These challenge codes
are typically designed to be representative of the different
kinds of optimizations users may try while trying to solve
the problem. Although performance engineering tasks often
do not have a well-defined notion of “completion”, the task
of improving performance until one has beaten all of the
challenge codes is a tangible proxy objective.

Parallelism analysis. Speedcode runs and displays the
reports generated by the Cilksan race-detection tool and the
Cilkscale scalability analyzer. These tools assist students learn-
ing parallel programming by making it easier to debug, verify
correctness, and understand the scalability of different parallel
algorithms and implementation decisions.

IV. EXPERIENCES

Our prototype of Speedcode has only a little over 300
registered users, but our early experiences with the platform
suggest that it substantially reduces the effort required to
teach lessons in software performance engineering and parallel
programming. Thus far, Speedcode has been used to run two
tutorials, and three classroom assignments at Johns Hopkins

University and U.C. Riverside. At MIT, it has been used as
a training tool for undergraduate researchers starting projects
related to parallel algorithms and performance engineering.
The remainder of this section briefly summarizes some of our
early experiences with the learning platform.

A. Classroom setting

Speedcode was used for two lectures on parallel computing
for data science at Johns Hopkins University. The first lecture
was on fork-join parallelism (using Cilk) and the second was
on vectorization (SIMD parallelism). Students completed both
in-class and take-home assignments using Speedcode. A mix
of undergraduates and graduate students completed in-class
and take-home assignments over the course of a week using
Speedcode. Despite many of the students having little C/C++
development experience, students were able to engage with
the exercises immediately using just their personal laptops and
tablets without a cumbersome setup process.

Speedcode allowed for new topics and exercises to be in-
troduced into a class that typically operates within the Python
programming ecosystem. In prior years, Cilk and fork-join
parallelism had not been taught since the burden of setting up
the necessary software and infrastructure was not justifiable for
a single assignment. Vectorization was taught in prior years,
but only theoretically and without any hands-on exercises.

At U.C. Riverside, Speedcode was used for an optional
hands-on assignment for a theory-focused class on parallel
algorithms. The course covered work-span analysis and algo-
rithmic techniques in parallel programming. Speedcode was
used for an optional assignment related to parallelizing a
numeric integration algorithm. Although the class was focused
on theory, many of the students had prior experience with
programming and were familiar with LeetCode. Students were
particularly enthralled by the parallel analysis tools provided
by Speedcode that allowed for quick detection of race condi-
tions and measurement of parallel scalability. Many mentioned
that they had not previously seen such analysis, as much of
their prior hands-on experience was with sequential programs.

B. Tutorials and presentations

The Speedcode platform has been used to run a tutorial
at ACM SPAA, a parallel algorithms conference, and to
present an interactive demo during a presentation to the DOE.
The tutorial at SPAA focused on the general capabilities of
Speedcode to teach parallel algorithms. The DOE presentation
was not specifically focused on Speedcode itself, but rather
on the importance of software performance engineering. Here
Speedcode was used to provide a hands-on exercise to accom-
pany a case study on the performance of matrix multiplication.

C. Screening and on-boarding

The Speedcode platform has been used to provide exer-
cises to undergraduate students who are interested in doing
parallel algorithms and systems research as an MIT UROP
(undergraduate researcher). It is not uncommon for faculty and
research scientists to assign didactic programming exercises to



prospective undergraduate researchers. Such exercises often
serve the dual purpose of a screening tool to identify well-
prepared students, and also an on-boarding tool to acquaint
students with new research topics and methods.

We have used Speedcode as a screening/teaching tool for
new projects related to graph algorithms and systems. Specifi-
cally, we use triangle counting (TC), a typical graph problem,
for recruiting and evaluating potential UROP students. So
far more than 30 MIT students have taken this exercise on
Speedcode. The TC exercise involves several programming
optimizations, which makes it a useful evaluation of a student’s
prior experience and interest in graph algorithms and systems.

V. SPEEDCODE CURRICULUM

A major use case of Speedcode is online learning. Presently
we are working with university and industry partners to build
online SPE curriculum, and are looking to establish an in-
clusive and collaborative ecosystem for software performance
engineering (SPE) education.

Our objective is to develop a Speedcode Curriculum (SCC)
in collaboration with communities of educators to enable high-
quality and highly-accessible online learning opportunities
for topics related to software performance engineering and
parallel programming. The SCC will be composed of an
organized collection of programming exercises on Speedcode
that illustrate critical SPE concepts such as Bentley’s rules [6]
for optimizing work, cache efficient algorithms, vectorization,
data structures, and parallel programming patterns.

We welcome people in the SPE community to join and
contribute to the curriculum.

VI. CONCLUSION

Speedcode aims to facilitate both student self-study of soft-
ware performance engineering and instructors’ introduction
of software performance engineering to their students. The
prototype of Speedcode is available at http://speedcode.org.

ACKNOWLEDGEMENTS

Research was sponsored by the United States Air Force
Research Laboratory and the Department of the Air Force
Artificial Intelligence Accelerator and accomplished under Co-
operative Agreement Number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Department of
the Air Force or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES

[1] [Online]. Available: https://leetcode.com/

[2] [Online]. Available: https://opencilk.org/

[3] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele Jr., and S. Tobin-Hochstadt, The Fortress Language Speci-
fication Version 1.0, Sun Microsystems, Inc., Mar. 2008.

[4] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of OpenMP
tasks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404-418, 2009.

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

R. Barik, Z. Budimlic, V. Cave, S. Chatterjee, Y. Guo, D. Peixotto,
R. Raman, J. Shirako, S. Tagirlar, Y. Yan, Y. Zhao, and V. Sarkar,
“The Habanero multicore software research project,” in Proceedings of
the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’09.
New York, NY, USA: ACM, 2009, pp. 735-736. [Online]. Available:
http://doi.acm.org/10.1145/1639950.1639989

J. L. Bentley, Writing efficient programs. Prentice-Hall, Inc., 1982.
R. D. Blumofe and C. E. Leiserson, “Space-efficient
scheduling of multithreaded computations,” SIAM J. Comput.,
vol. 27, no. 1, pp. 202-229, Feb. 1998. [Online]. Available:
http://dx.doi.org/10.1137/S0097539793259471

——, “Scheduling multithreaded computations by work stealing,” J.
ACM, vol. 46, no. 5, pp. 720-748, Sep. 1999. [Online]. Available:
http://doi.acm.org/10.1145/324133.324234

R. L. Bocchino, Jr.,, V. S. Adve, S. V. Adve, and M. Snir, “Parallel
programming must be deterministic by default,” in Proceedings of the
First USENIX Conference on Hot Topics in Parallelism, ser. HotPar’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 4—4. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855591.1855595

R. P. Brent, “The parallel evaluation of general arithmetic expressions,”
J. ACM, vol. 21, no. 2, pp. 201-206, Apr. 1974. [Online]. Available:
http://doi.acm.org/10.1145/321812.321815

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Speedup versus
efficiency in parallel systems,” IEEE transactions on computers, vol. 38,
no. 3, pp. 408-423, 1989.

M. Feng and C. E. Leiserson, “Efficient detection of determinacy races
in Cilk programs,” in Proceedings of the Ninth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), June 1997, pp. 1-11.
S. S. Foley, D. Koepke, J. Ragatz, C. Brehm, J. Regina, and J. Hursey,
“Onramp: A web-portal for teaching parallel and distributed computing,”
Journal of Parallel and Distributed Computing, vol. 105, pp. 138-149,
2017.

M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multithreaded language,” SIGPLAN
Not., vol. 33, no. 5, pp. 212-223, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/277652.277725

R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell
System Technical Journal, vol. 45, pp. 1563—-1581, 1966.

T. Kaler, “Programming technologies for engineering quality multicore
software,” Ph.D. dissertation, Massachusetts Institute of Technology,
2020.

D. Lea, “A Java fork/join framework,” in Proceedings of the
ACM 2000 Conference on Java Grande, ser. JAVA °00. New
York, NY, USA: ACM, 2000, pp. 36-43. [Online]. Available:
http://doi.acm.org/10.1145/337449.337465

D. Leijen and J. Hall, “Optimize managed code for multi-core ma-
chines,” MSDN Magazine.

C. E. Leiserson, “The Cilk++ concurrency platform,” Journal of
Supercomputing, vol. 51, no. 3, pp. 244-257, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s11227-010-0405-3

S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on
manycore clusters,” in Fifth Conference on Partitioned Global Address
Space Programming Models (PGAS ’11), Oct. 2011.

S. S. Patil, “Record of the project MAC conference on
concurrent systems and parallel computation,” J. B. Dennis, Ed.
New York, NY, USA: ACM, 1970, ch. Closure Properties of
Interconnections of Determinate Systems, pp. 107-116. [Online].
Available: http://doi.acm.org/10.1145/1344551.1344561

J. Reinders, Intel Threading Building Blocks, 1st ed. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 2007.

T. B. Schardl and L.-T. A. Lee, “Opencilk: A modular and extensible
software infrastructure for fast task-parallel code,” in Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’23. New York, NY, USA:
Association for Computing Machinery, 2023, pp. 189—-203. [Online].
Available: https://doi.org/10.1145/3572848.3577509

G. L. Steele, Jr., “Making asynchronous parallelism safe for the
world,” in Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’90. New
York, NY, USA: ACM, 1990, pp. 218-231. [Online]. Available:
http://doi.acm.org/10.1145/96709.96731



