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ABSTRACT

Graph representation learning has gained significant traction in critical domains including
finance, social networks, and transportation systems due to its successful application to graph-
structured data. Graph neural networks (GNNs), which integrate the power of deep learning
with graph structures, have emerged as the leading methods in this field, delivering superior
performance across diverse graph related tasks. However, training graph neural networks on
large-scale datasets encounters scalability challenges on current system architectures. First,
the sparse, non-localized structures of real-world graphs lead to inefficiencies in data sampling
and movement. This characteristic heavily stresses system input/output (I/O), particularly
burdening the peripheral buses during the sampling phase of GNN training. Second, the
suboptimal mapping of training procedure to GPU kernels leads to compute inefficiencies,
including substantial kernel orchestration overhead and redundant computations.

Addressing these challenges requires a comprehensive, full-stack optimization approach
that fully leverages hardware capabilities. This thesis presents two complementary works to
achieve the goal. The first work, Hanoi, unblocks the data loading bottleneck in out-of-core
GNN training by co-designing the sampling algorithms to align with the hierarchical memory
organization of commodity hardware. Hanoi drastically reduces I/O traffic to external
storage, delivering up to 4.2× speedup over strong baselines with negligible impacts on the
model quality. Notably, Hanoi is able to obtain competitive performance close to in-memory
training with only a fraction of memory requirements. Building on this foundation, the
second work, Joestar, introduces a unified framework for optimized GNN training on GPUs.
Joestar adapts the multistage sampling approach from Hanoi to in-memory training which
frees CPUs from heavy data loading workloads. Joestar also identifies novel kernel fusion
opportunities and formulates better execution schedules by jointly considering the sampling
and compute stages. Combined with compiler infrastructure in PyTorch, Joestar achieves
state-of-the-art GNN training throughputs for billion-edge graph datasets on a single GPU.

Thesis supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Graphs are a versatile and powerful tool for modeling relationships between entities in various
domains. Extracting valuable insights from graph data is of long-standing interest to both
academic research and industry [1–3]. Traditionally, analytics over graph data are done
through classic algorithms such as graph traversals, PageRank [4], subgraph pattern mining [2,
5], etc. Although these algorithms are well studied and have excellent explainability, they
are rather limited in their predictive performance and hard to generalize because of their
nature: they are non-learning based methods. For the last decade, graph representational
learning has emerged as a popular field to address the difficulty of classic graph algorithms.
Graph representation learning [6, 7] aims to learn low-dimensional node embeddings that
encode the neighborhood structural information and other input features. The generated
embeddings are then fed to task-specific decoders for diverse graph learning tasks, e.g., node
classification, link prediction or graph prediction [6]. More recently, the combination of deep
learning with graph data further sparked a new class of graph representation learning methods:
graph neural networks (GNNs). GNNs [8–18] strongly outperform conventional encoding
methods [19–22] in graph representation learning for both accuracy and generality, thus
enjoying wide adoption in real-world use cases, including social networks, recommendation
systems, traffic modeling, weather forecast, and more [23–28].

Similar to machine learning models in other domains, GNNs are trained iteratively by
making predictions on the input graph data (i.e., forward passes) and updating model
parameters with backpropagation [29] (i.e., backward passes). GNNs integrate the structural
information into node embeddings through the message passing mechanism [8, 18]. In a
message passing layer, input node embeddings are propagated along edges, aggregated in
destination nodes and passed to the next layer for further transformation, usually by a
Multi-Layer Perceptron (MLP) or another message passing layer. In the majority of GNN
frameworks including this thesis, graph data are represented in sparse adjacency matrices
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for graph structures and dense matrices for embeddings. Message passing layers are lowered
to a common set of kernels between sparse and dense matrices [30, 31], the most notable of
which being sparse dense matrix multiplication (SpMM) with different reduction operations
(e.g., MEAN, MAX, or SUM) and sampled dense-dense matrix multiplication (SDDMM) with
different pairwise operations (e.g., ADD or MUL). These kernels are well-studied topics on
modern GPUs [32]. Thus, in common practice, the model computation part of GNN training
is entirely offloaded to GPUs and enjoys significant performance speedups over CPUs.

As GNNs are being applied to real-world datasets, several system-level scalability challenges
arise due to the unique characteristics of graph data and message passing layers. The first
challenge emerges in graph sampling and I/O. To limit the memory footprint, Stochastic
Gradient Descent (SGD) becomes essential in large-scale GNN training, which entails mini-
batching and sub-sampling of input graph data on CPUs and then transferring the sampled
subgraphs to GPUs for model computation. However, since many graph datasets are highly
non-localized (the Small-World Phenomenon [1]), the neighborhood size of a node can grow
exponentially with the number of hops. The data-intensive sampling step performed by
CPUs and bus transfer to GPUs constitute a significant portion of overhead in the training
pipeline. This bottleneck in sampling and I/O, summarized as “data loading” in the thesis,
is further exacerbated by the trend of applying GNNs to increasingly larger graph datasets.
For example, the largest datasets in leading graph learning benchmarks [33, 34] require
200GB–1TB of space when fully loaded, far exceeding the memory capacity of GPUs and
even many CPU servers at the time of writing. This either renders training infeasible on
single-node GNN frameworks due to out-of-memory (OOM) errors or makes it extremely
slow as the system spends most time waiting for I/O from the external storage [35, 36].

Apart from the data loading bottleneck, sampling based GNN training also suffers from
poor execution efficiency on GPUs. While key computation kernels such as general matrix
multiplication (GEMM) and SpMM accelerate well on GPUs, the overall GPU utilization
still remains suboptimal. The main cause of the under-utilization is attributed to the kernel
invocation patterns in GNN sampling and model compute. On GPUs, sampling based GNN
training systems tend to spawn a swarm of short-lived kernels with low execution latencies.
The orchestration work of these fine-grained lightweight kernels (e.g., graph sampling, graph
transpose) and frequent host synchronizations expose the kernel launch overhead directly to
the training pipeline, leading to low GPU activity and thus poor resource utilization. These
factors greatly limit GPU-centric GNN training from reaching its full potential.

In this thesis, we seek to address challenges above in a holistic approach through algorithm-
system co-design and joint optimizations of GNN sampling and compute. In particular, to
solve the most pressing data loading bottleneck, we leverage a novel multistage sampling

16



paradigm for GNN training. Multistage sampling separates conventional monolithic, single-
stage sampling into multiple stages that fit well into the hierarchical memory organizations
of machine learning hardware and promote active data reuse. We propose graph sampling
methods with careful algorithm-system co-design, taking both hardware characteristics at
each memory tier and model accuracy into account. Two systems with different hardware
configurations are built to demonstrate the advantages of this approach. In the first system
Hanoi, we consider an out-of-core training setup where graph dataset sizes exceed even the
host memory. Hanoi directly works with the graph data stored externally on cheap but
slow media such as solid state drives (SSDs) or hard disks. The key enabler for efficient data
loading is the first-stage GNN sampling between external storage and host memory, which
only samples coarse-grained fragments of graph structures and features in an I/O-friendly
manner. Unlike prior works that achieve I/O efficiency at the cost of model accuracy [37],
Hanoi provides a robust remedy to minimize the impacts of rigid sampling on model quality.
Enhanced with deep pipelining across multiple sampling and compute stages, Hanoi is able
to decouple I/O from the critical path completely.

The second system, Joestar, targets more common in-memory training scenarios. Joes-

tar presents a unified framework to jointly optimize GNN sampling and compute on GPUs.
Joestar utilizes multistage sampling to divide the heavyweight data loading between CPUs
and GPUs, where the majority of sampling work is offloaded to more powerful GPUs. Thus,
CPUs and PCIe buses are freed from the data loading bottleneck. Joestar differentiates
from existing GNN compilers [38–41] in its novel integration of graph sampling and other
structural operations within the model compilation process. This unified perspective of GNN
compilation leads to discovery of new optimization opportunities, such as elimination of
redundant graph structure operations interleaved with model computation and reduction of
data movement through novel cross-stage operator fusions. Moreover, Joestar conducts
profile-guided optimization to determine the best data formats and orders of expensive
matrix multiplications. The inclusion of sampling, forward and backward passes makes cost
estimation much more accurate than heuristic approaches in prior works [30, 40].

1.1 Thesis Contributions

This thesis systematically advances large-scale graph representation learning by developing
efficient techniques for accessible hardware infrastructure. Through in-depth profiling, it
identifies data loading as the most pressing performance bottleneck, followed by inefficient
mapping of GNN training on GPUs, which represents a drastic shift from machine learning
workloads in other domains. This thesis then demonstrates how to tackle the challenges
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above with one novel sampling paradigm and two GNN training systems. In particular, the
contributions of this thesis entail the following parts.

A multistage sampling perspective to GNN training:

1. First-principle performance analysis of multistage sampling compared to single-stage
with caching, which clarifies the source of speedups.

2. Statistical analysis of model convergence behavior with multistage sampling, which
identifies potential impacts on model accuracy.

An I/O-efficient out-of-core GNN system:

1. Design and implementation of Hanoi, a fast and accurate out-of-core GNN training
system which achieves excellent I/O efficiency.

2. Accuracy-aware aspects in the sampler design of Hanoi to minimize loss of model
accuracy from multistage sampling.

3. An end-to-end system evaluation on gigantic datasets that shows Hanoi almost entirely
hides the I/O bottleneck with negligible impacts on the model quality.

A compute-efficient GPU-centric GNN system:

1. Joestar, an in-memory system that leverages multistage sampling to make GNN
training GPU-centric, even for datasets that exceeds the size of GPU memory.

2. A unified compilation framework for end-to-end GNN training on GPUs, including
graph sampling, graph structural operations and GNN model computation.

3. Novel optimization passes that jointly consider all training stages for better runtime
performance and a comprehensive evaluation that demonstrates state-of-the-art training
performance of Joestar.

1.2 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 familiarizes readers with basic operations in the construction of graph neural
networks followed by state-of-the-art practice in large-scale GNN training. Next, we
highlight system-level challenges in further scaling up GNN over massive graph data.
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Particularly, we summarize the data loading bottleneck and inefficient GPU runtime
as the major causes of low compute utilization, which motivates the solutions in the
following chapters.

• Chapter 3 discusses the fundamental idea of multistage sampling which is employed
throughout the thesis to address the most severe data loading bottleneck in GNN
training. In this chapter, we analyze the effects of multistage sampling in both I/O
costs and model convergence. Several metrics are drawn from the analysis to guide the
design of multistage samplers in real systems.

• Chapter 4 introduces out-of-core GNN training as a cost-efficient alternative to scale up
GNN over massive graph data. We then describe the design of Hanoi, an out-of-core
GNN system which instantiates multistage sampling with hierarchical pipelining to
break out of the data loading bottleneck. The algorithm-system co-design of first-stage
samplers proposed by Hanoi are explained in great detail, including the GNN-aware
graph partitioner and hub node augmentation. They play a key role for Hanoi to achieve
a good balance of training efficiency and model quality. This chapter concludes with a
comprehensive evaluation of Hanoi including training throughputs, model performance
as well as the sensitivity analysis under different memory and I/O constraints.

• Chapter 5 presents Joestar, the second GNN system in this thesis focusing on efficient
GPU-centric in-memory training. Joestar has different instantiations of multistage
sampling, which makes GNN training GPU-bound even for datasets beyond the capacity
of GPU memory. Next, motivated by a detailed kernel profiling on GPUs, we describe the
unified GNN compilation framework in Joestar, including intermediate representations
(IRs) for key GNN operations, optimization passes and low-level kernel implementations.
Towards the end of this chapter, we compare the training throughputs and resource
utilization of Joestar with competitive in-memory training baselines.

• Finally, we conclude the thesis and briefly discuss future research directions in Chapter 6.
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Chapter 2

Background and Motivations

2.1 GNN Preliminaries

This work mainly considers message-passing GNNs which are state-of-art methods designed
for representation learning on graphs [6]. The graph input comes in the form of G(V , E ,H),
where V and E are the node set and edge set of G with H as the input node feature embeddings
attached with V . GNNs use message passing to iteratively update the features and explicitly
learn from the graph structure. GNNs also utilize the expressive power of neural networks
in feature transformation. Output node embeddings generated by GNNs are considered to
contain rich information of the neighborhood, which are used in various downstream tasks in
a decoding manner. In this thesis, we are mainly concerned with training GNN models as
encoders, since it constitutes a common backbone in graph learning.

Let σ(·) be a non-linear activation function, N (v) denote the node set of first-hop
neighborhood of v in G and hk

v be the intermediate embedding of v at the k-th hidden layer.
Formally speaking, an L-layer GNN can be formulated as below (0 ≤ k < L):

z(k+1)
v = f

(
h(k)

v , AGG
{
g(h(k)

v ,h(k)
u )|u ∈ N (v)

})
(2.1)

h(k+1)
v = σ(z(k+1)

v ),h(0)
v = Hv (2.2)

where AGG is an operator for aggregating incoming neighbor features after message passing,
f is a function (usually learnable, e.g., a linear layer) to update the aggregated features,
and the optional g applies transformation to features before message passing. z(L)

v is usually
taken as the final encoded representation for node v, which is fed to task-specific decoders.
Mainstream GNN architectures generally follow this framework but differ in the choices of
g for message passing [9, 10, 17], the aggregation function AGG [9, 11, 12] and the feature
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update function f . For example, in GraphSAGE [9] with the MEAN aggregator, f applies two
independent linear transformations to the embedding of source node v and the aggregated
embedding while g does nothing, so Eq. (2.1) is written as:

z(k+1)
v = h(k)

v W1 +
1

|N (v)|
∑

u∈N (v)

h(k)
u W2 (2.3)

W1,W2 are two learnable weight matrices at Layer k. In GAT [10], function g employs the
attention mechanism to obtain an attention coefficient for each (v, u) pair, which is later
normalized as scalar weights in message passing:

ev,u = σ(hvWattna1
T + huWattna2

T ) (2.4)

Computationally, the graph structures are represented as sparse adjacency matrices. In
this thesis, we mainly consider three formats to express the sparse matrices, namely the
coordinate list (COO), compressed sparse row (CSR) and compressed sparse column (CSC)
formats. Node and edge data attached to the graph are stored as dense tensors indexed by
the assigned node or edge IDs. The message passing and aggregation steps are then expressed
with matrix kernels such as GEMM, SpMM and SDDMM. For example, a GraphSAGE layer
(Eq. (2.3)) is mapped to

Z = H ·W1 +D−1A ·H ·W2 (2.5)

where D, A are the degree matrix and adjacency matrix of G respectively, in the CSC format.
Here A ·H invokes SpMM. Correspondingly, the attention mechanism in GAT is mapped to

h1 = HWattna1
T ,h2 = HWattna2

T

E = (h1 ⊕ hT
2 )⊙ I[A] (2.6)

where Eq. (2.6) invokes a generalized SDDMM using non-zeroes in the adjacency matrix A as
a sparsification mask (⊕ means addition is used as the pairwise operator in the generalized
SDDMM). Likewise, the backward passes of GNN training are expressed in the same set of
operations plus transposition of the sparse matrices. For SpMM (X = AH), the gradients
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are computed as

∂L

∂H
= AT ∂L

∂X
(SpMM) (2.7)

∂L

∂A
= (

∂L

∂X
HT )⊙ I[A] (SDDMM) (2.8)

The gradients of vanilla SDDMM (E = (H1H
T
2 )⊙ I[A]):

∂L

∂H1

=
∂L

∂E
H2 (SpMM) (2.9)

∂L

∂H2

=

(
∂L

∂E

)T

H1 (SpMM) (2.10)

For a more exhaustive description of GNN-specific operators, we refer readers to prior works on
GNN frameworks with automatic differentiation [30, 31]. Note that in the above discussions,
we largely omit common operations in dense neural networks such as linear layers, non-linear
activations, dropouts, batch normalization, etc. These layers, lowered to dense matrix and
vector kernels, can also represent substantial computation overhead in GNN training.

2.2 Mini-Batch Training of GNNs

Traditionally, GNNs are trained in a full-batch fashion and accelerated on GPUs [8, 42, 43].
Full-batch training requires data including G, input feature H, hidden features and model
parameters to be resident on the GPU memory. Although GNN models are usually small
compared to other deep neural networks, the input and intermediate feature data can take
up significant storage space, making full-batch training on GPUs impractical as we consider
realistic datasets with significantly larger |V| and |E|. Thus, mini-batch training of GNNs [9]
has become a standard approach for larger graph datasets. Therein, the host CPU regularly
samples mini-batches of training data from G and H, and then transfers them to the GPU
through peripheral buses, while the GPU now only holds model states and performs model
training on the sampled mini-batch. Mini-batch training greatly alleviates memory pressure
on the GPU side since the sampled subgraphs are expected to be much smaller than G.
Besides, it also speeds up model convergence through Stochastic Gradient Descent (SGD)
compared to vanilla gradient descent in full-batch training [44].

However, different from other domains, sampling mini-batches in GNNs is trickier because
nodes are interconnected with edges so cannot be taken independently. Based on Eq. (2.1),
the output embedding of a node at the L-th layer depends on its L-hop neighborhood
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which can grow exponentially with L on real-world graphs with low locality. This well-
known problem of neighborhood explosion has motivated the proposal of various sampling
techniques to reduce mini-batch sizes by sub-sampling the L-hop neighborhood of training
example. Notable proposals include node-wise sampling [9, 45], layer-wise sampling [46, 47]
and subgraph sampling [48–50]. This sub-sampling of graph structures essentially results in
an approximation of the forward computation in GNNs. Among them, neighbor sampling
(NS) [9] is the most widely-used sampling algorithm in large-scale graph datasets due to
its robustness. It enforces upper bounds for the number of sampled neighbors per node at
each layer to a fixed fan-out parameter, usually much lower than the maximum degree of the
graph to restrict the sizes of sampled subgraphs. Therefore, the current practice of large-scale
GNN training consists of multiple stages below (Fig. 2.1):

1. Graph sampling: extracting and sub-sampling L-hop neighbors from the selected
mini-batch of training examples. Neighbor sampling (NS) is a common choice for the
sampling algorithm.

2. Feature gathering: gathering required features of sampled subgraph from input features
H on the host.

3. Bus transfer: transferring the mini-batch data from CPU memory to GPU memory
through peripheral buses such as PCIe.

4. Model computation: GPU performs compute-intensive forward and backward passes to
update GNN model parameters.

Data (Host)

Operation (Host)

Data (GPU)

Operation (GPU)Operation (Bus)

Data Dependence

Bus
Transfer

Forward
Pass

Backward
Pass

Embedding
Table

Graph
Topology

Feature
Gathering

Graph
Sampling

Model

Mini BatchMini BatchSubgraph
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Pass

Backward
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Model

Embedding
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Graph
Topology

(a) (b)

Figure 2.1: Full-batch (a) and mini-batch (b) training pipelines for GNNs

2.3 Challenges of Scaling up Mini-Batch GNN Training

There has been extensive research on accelerating sparse computation patterns of GNNs
on GPUs [38–40, 42, 43, 51–54], CPUs [27, 55, 56] and even hardware accelerators [57–61].
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However, most of them focus on full-batch GNN computation which is inherently difficult to
scale to real-world large graphs. Mini-batch GNN training, on the other hand, demonstrates
a drastically different workload profile from full-batch. It requires a fresh perspective to
understand its performance characteristics and bottlenecks. In particular, the inefficiencies of
mini-batch GNN training systems are two-fold.

2.3.1 The Data Loading Bottleneck

Compared to full-batch GNN computation, mini-batch GNN training systems are heavily
stressed in the data loading step, i.e., graph sampling, feature gathering and bus transfer
(Fig. 2.1). In existing systems, these stages are carried out on the host CPU due to GPU
memory constraints. The main cause is the widening gap between bandwidths of CPUs, PCIe
and GPUs, as shown in Fig. 2.2.. As performance scaling of CPUs and PCIe continues to
lag behind GPUs for the past decade and foreseeable future, we expect current CPU-heavy
data loading designs will continue to be the main performance obstacle to large-scale GNN
training.
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Figure 2.2: Memory throughput scaling trends of top- of-line GPU, CPU models and PCIe (x16) for
the past decade.

The data loading bottleneck becomes more pressing as we consider the faster growth of
datasets than the memory. One goal of this thesis is to push the boundary of mini-batch
training paradigm beyond the in-memory setting. This aligns with the growing trend of
applying GNNs to massive industry-scale [24–27, 62] graphs. Some benchmark datasets [33,
34] designed to mimic real-world applications have also expanded beyond the memory capacity
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of a typical server machine. To handle data in such scales, people adopt distributed training
or out-of-core training which utilizes the external storage as the active data source. Both
methods are frequently bounded by I/O, either in the form of network or storage, as they are
usually one or two orders of magnitude slower than the memory bandwidth.

We highlight these concerns by collecting the runtime distribution of PyG [31], perhaps
the most popular GNN training framework, with results illustrated in Fig. 2.3. Neighbor
sampling with a fanout of 10,10,10 and the GraphSAGE model with a hidden dimension of
256 are used for all experiments. For small datasets (arxiv, products, details of datasets
shown later) that fit within host memory, while data preparation operations are relatively
efficient, they still constitute a substantial portion of total runtime due to the inherent
performance disparities between CPUs, PCIe and GPUs. As the GPU becomes more powerful
in the future, we expect the CPU and PCIe bottlenecks to be even more significant. For
larger datasets (papers, mag240m-c) that exceed host memory capacity, we employ memory
mapping (mmap) to virtually extend the trainer’s address space to prevent out-of-memory
errors. However, this straightforward out-of-core solution introduces substantial overhead:
the frequent page-in and page-out operations during graph sampling and feature gathering
operations dominate the execution time, accounting for over 80% of the total training time.
As a result, the I/O bottleneck on secondary storage leaves both CPU and GPU heavily
underutilized.

Datasets

0%

20%

40%

60%

80%

100%

arxiv products papers mag240m-c

Graph Sampling Feature Gathering Bus Transfer
Model Compute

GNN Model Training Runtime Breakdown

Figure 2.3: Training runtime breakdown for two small and two large datasets on a machine with
64GB host memory and one RTX 4090 GPU for model compute.
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2.3.2 Low Compute Utilization from Inefficient GPU Runtime

Mini-batch GNN training is also prone to inefficient kernel mapping and orchestration on
GPUs due to its unique input characteristics. Subgraphs from mini-batch sampling are highly
dynamic data, as the shape and topology of them keep changing. This trait renders GNN
kernel optimizations designed for full-graph computation largely ineffective. Frameworks that
rely on computationally-expensive preprocessing [42, 43] are particularly ill-suited for handling
dynamic mini-batch graphs. Moreover, reduced input data sizes from mini-batch sampling
makes it difficult to fully utilize the massive parallelism provided by modern GPUs. Most
kernels, as a result, are short-lived, exposing the kernel launching and host synchronization
overheads. To demonstrate this, we profile the training process of a typical GCN [8] model
with a batch size of 1000 for the products dataset. It turns out the GPU is busy for
only less than 35% of time after excluding the data loading time. In contrast, training the
ResNet50 [63] model yields higher than 91% GPU busy time.

In addition to inefficient kernel orchestration on GPUs, the widely-adopted neighbor
sampling method [9] generates subgraphs that are not only much sparser but also subgraphs
that iteratively shrink in sizes with each layer. For these highly sparse graphs, an interesting
observation is that dense matrix and element-wise kernels can outweigh sparse kernels in
terms of latency. Prior works that only focus on optimizing sparse GNN kernels [38, 42, 43,
53] offer limited advantages in this scenario.
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Chapter 3

Addressing the Data Loading Bottleneck
with Multistage Sampling

This chapter describes the method used throughout the thesis to address the most significant
performance issue of GNN training systems: the data loading bottleneck. Motivated by the
frictions between the traits of GNN sampling and modern machine learning hardware, the
thesis introduces multistage sampling co-designed with hierarchical memory organization as
the main solution in reducing I/O and promoting data reuse.

3.1 A Multistage Sampling Perspective

As described in Chapter 2, existing mini-batch GNN training systems adopt a flat sampling
architecture, where mini-batches are repeatedly sampled from the complete graph data stored
in larger but slower memory tiers. This monolithic approach leads to several performance
limitations. The irregular data accesses inherent in sampling operations cause poor I/O
performance at lower memory tiers. Transferring mini-batches across multiple memory
hierarchies is easily bottlenecked by the peripheral bus interface. Although there are works
proposing to build caching layers to reduce costly I/O [36, 64–67], the fundamental mismatch
between fine-grained sampling and certain memory tiers (particularly secondary storage
like hard disks) will still cause significant performance degradation. Besides, the separation
between GNN sampling and model computation hinders optimizations such as gather-compute
kernel fusion, which is critical to alleviate the data movement overhead in GNN training.

To overcome these challenges, this thesis proposes a multistage sampling scheme for GNN
training, where data sampled in earlier stages serves as the source in later stages. To illustrate
this approach, consider a two-stage sampling implementation. The data loading process runs
in two nested loops (Algorithm 1). The inner loop (Line 3) reuses the previously-sampled
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data G ′,H′ to generate mini-batches, thereby converting frequent data traffic on M1 into
infrequent bulk data transfers from M1 to M2 (Line 2).

Algorithm 1 GNN training with two-stage mini-batch sampling
Require: Graph G with feature data H; GNN samplers for the two stages Sample1&Gather1,

Sample2&Gather2; memory tiers M1 and M2 with decreasing capacities but increasingly
faster I/O. Initially, G and H are stored in M1.

1: for G ′ in Sample1(G) do
2: H′ ← Gather1(G ′, H) ▷ Gather sampled features from M1 and load to M2
3: for G ′′ in Sample2(G ′) do
4: H′′ ← Gather2(G ′′, H′) ▷ Gather sampled features from M2 for final training
5: Train the GNN model with G ′′, H′′

6: Update H′ ▷ Write updated features to M2 (model dependent)
7: end for
8: Update H ▷ Write updated features from M2 to M1 (model dependent)
9: end for

Note that Algorithm 1 puts no hard constraints on the choices of GNN samplers so far.
Different combinations of samplers would likely result in drastically different training perfor-
mance and model quality. Therefore, we aim to answer these two questions in the following
sections:

• When does multistage sampling benefit model training performance?
• How does the cascading of samplers affect model convergence?

3.2 Training Performance: I/O Cost Analysis

The runtime of large-scale GNN training is dominated by I/O incurred by mini-batch
sampling and data loading (Fig. 2.3). To answer the first question, we compare I/O costs
in the conventional single-stage sampling approach with the proposed multistage sampling
approach. The discussion is based on an abstracted system architecture for generality shown
in Fig. 3.1. The lower memory tier provides larger capacities than the higher memory tier
and keeps the complete training data, albeit at the cost of slower I/O interface. We denote
I/O bandwidths of low/high memory tiers as BWl and BWh. This memory organization is
representative of modern machine learning hardware. For example, the lower and higher
memory tiers could correspond to host memory and GPU memory, where the compute PEs
are GPU cores. For out-of-core settings where the training data is larger than the host
memory, the two memory tiers represent the secondary storage and host memory, while
the compute PEs become CPU cores. Fig. 3.1a shows data path in single-stage sampling,
where data accesses to the lower memory tier ( 2 and 3 ) are in the critical path of every
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(b) Multistage GNN sampling

Figure 3.1: Data access paths in GNN training with (a) the flat single-stage sampling scheme and
(b) the hierarchical two-stage sampling scheme.

mini-batch generation step. 1 performs mini-batch and graph sampling. 2 requests data
from the lower memory tier on cache misses. 3 returns the requested data and updates the
sampling cache. 4 finalizes the sampled data for training. Fig. 3.1b illustrates data paths in
multistage sampling. Accesses the lower memory tier ( 1 ) are decoupled from the frequent
paths of mini-batch generation ( 2 3 ). 1 performs large-batch sampling and loads the data
into the staging buffer. 2 3 perform multiple mini-batch sampling iterations using data
from only the staging buffer.

Given a subset of training examples B, we characterize the working set size of a graph
sampling algorithm S as CS(B). As we will show later, CS(B) plays a critical role in the
effectiveness of multistage sampling. Sampling cache widely exists in state-of-art systems
based on flat single-stage sampling (Fig. 3.1a). We use the average cache miss ratio β to
characterize its utility, which is dependent on multiple factors such as cache policies, capacity
and input data. The average I/O cost per iteration of Fig. 3.1a is then

Costa =
1− β

BWh

CS(B) +
β

BWl

CS(B). (3.1)

For multistage sampling (Fig. 3.1b), we take the following procedure to ensure the same batch
size as single-stage sampling: the first-stage sampler, denoted as S1, produces a large batch
BK with K times more training examples than B. The second-stage sampler, S2, produces
mini-batches in K consecutive iterations from BK . The average I/O cost per iteration for
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Fig. 3.1b is

Costb =
1

BWh

CS2(B) +
1

BWl ·K
CS1(BK) ≤

1

BWh

CS1(BK) +
1

BWl ·K
CS1(BK). (3.2)

Since there is usually a substantial performance gap between BWl and BWh (e.g., PCIe is
two orders of magnitude slower than GPU memory), we ignore the insignificant first term.
Hence, multistage sampling achieves an I/O cost reduction of

Costb
Costa

≲
CS1(BK)
βKCS(B)

=
1

β

CS1(BK)/|BK |
CS(B)/|B|

, when BWh ≫
BWl

β
. (3.3)

Conclusion. We define CS(B)/|B| as the normalized working set size for the sampler S
and B. The normalized working set size of first-stage sampling is the deciding factor in
overall I/O cost reduction, even though the general form in Eq. (3.3) does not guarantee
multistage sampling achieves I/O savings compared to single-stage. It is thus crucial to pick
an I/O-efficient sampler at the lower memory tier for realistic performance advantages. We
also remark that the sampler choice at the higher memory tier becomes less relevant to overall
I/O costs if caching fails to bridge the performance gap between memory tiers.

3.3 Model Convergence: Statistical Analysis

In this subsection we provide a sketch of theoretical analysis to describe the model convergence
behavior with multistage sampling, which we will leverage to understand existing strategies
and also improve them. The analysis is based on the decomposition of gradient estimation
errors in GNN training. The errors have been widely known to directly influence the
convergence behavior in stochastic gradient training [44, 45, 47, 68]. We adopt notations
introduced in Chapter 2, while new ones are listed in Table 3.1. To provide a gist of analysis,
we consider the vanilla SGD-style training algorithm, where the parameters are updated as
θk+1 = θk − η · g̃B(θk). We begin with the standard assumption on the smoothness of the
objective function:

Assumption 3.3.1. F (·) is continuously differentiable and its gradient ∇F (·) is L-Lipschitz
continuous, i.e.,

∇F (θ1)−∇F (θ2) ≤ L∥θ1 − θ2∥2, ∀θ1, θ2.

It then follows from standard stochastic gradient analysis (referring to LazyGCN [68] up to
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θ, θk, θ∗ Model parameters. θk refers to the parameters at the k-th itera-
tion, while θ∗ denotes the optimal parameters.

B,B1,B2, etc. A sampled mini-batch of training examples.
fv, f̃v f is the exact objective function for a single training sample v,

while f̃ denotes the approximate objective function under graph
sampling.

F, F̃ Full-batch versions of fv and f̃v, e.g., F (θ) = 1
|V|

∑
v∈V fv(θ).

Thus, F is the objective function in original full-batch GNN
training.

FB, F̃B Mini-batch version of fv and f̃v, e.g., FB(θ) =
1
|B|

∑
v∈B fv(θ).

∇F (θk), g(θk) ∇F (θk) is the full gradient on the model parameters at the
k-th iteration. g(θk) denotes the gradient estimator for the
corresponding exact or approximate objective function, e.g.,
g̃B(θk) = ∇F̃B(θk).

Table 3.1: Summary of Notations

Equation 34 for details) that with a proper choice of the step size 0 < η ≤ 1
L
, we can yield

1

T

T∑
k=1

E
[
∥∇F (θk)∥22

]
≤ 2

η

E [F (θ1)]− E [F (θ∗)]

T
+ 2ηL∆T

T→∞−−−→ 2ηL∆T (3.4)

where ∆T = 1
T

∑T
k=1 E [∥g̃B(θk)−∇F (θk)∥22]. Real-world implementations of GNN training

usually adopt diminishing learning rates so the right-hand side of Eq. (3.4) eventually
converges to 0, regardless of the asymptotic behavior of ∆T . Nonetheless, it is clear that
the average gradient estimation error ∆T plays a critical role in the upper bound of model
convergence rates.
Decomposition of the error term. Under the condition of unbiased mini-batch sampling
(E [gB(θk)−∇F (θk)] = 0) which commonly holds, and assuming the independence of sampling
training examples and graph structures, the error decomposition is straightforward:

E
[
∥g̃B(θk)−∇F (θk)∥22

]
= E

[
∥g̃B(θk)− gB(θk)∥22

]
+ E

[
∥gB(θk)−∇F (θk)∥22

]
+ 2E⟨g̃B(θk)− gB(θk), gB(θk)−∇F (θk)⟩

= E
[
∥g̃B(θk)− gB(θk)∥22

]
+ E

[
∥gB(θk)−∇F (θk)∥22

]
= E

[
∥g̃B(θk)− gB(θk)∥22

]
+ V [gB(θk)] .

(3.5)

Therefore, the error term ∥g̃B(θk)−∇F (θk)∥22 in ∆T consists of two sources:

• sampling variance due to mini-batching of training examples (V [gB(θk)])
• sampling bias introduced by graph sampling and non-linear layers (E [∥g̃B − gB∥22]).
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Similar tricks can be used to decompose each error term in multistage sampling. The
estimation and approximation procedures are sketched below. Therein, B1 and B2 denote the
sampled sets of training examples at two stages, where B1 is sampled from V and B2 from B1,
both without bias. F̂ represents the objective function after the second-stage graph sampling
as a further approximation of F̃ .

Single-stage sampling: F (θ)
estimate
=====⇒

B∼V
FB(θ)

approx
====⇒ F̃B(θ).

Multistage sampling: F (θ)
estimate
=====⇒
B1∼V

FB1(θ)
estimate
=====⇒
B2∼B1

FB2(θ)
approx
====⇒ F̃B2(θ)

approx
====⇒ F̂B2(θ).

Mini-batch induced variance. Following the decomposition scheme, we can break down
the variance induced by mini-batch sampling into a sum of variances introduced at each
stage, provided that sampling is always unbiased (each example shares the same probability
of being selected):

V [gBn(θk)] = V [gB1(θk)] + E
[
∥gB2 − gB1∥22

]
+ · · ·+ E

[
∥gBn − gBn−1∥22

]
. (3.6)

To lower the variance, it is thus crucial to avoid sampling examples of very close gradients at
each sampling stage. Most GNN training systems by default conduct sampling with random
shuffling. This works well in maintaining the diversity of training examples and reduces the
variance in proportion to the batch size: VB∼V [gB(θk)] =

1
|B|Vv∼V [gv(θk)]. However, in more

restricted settings, random shuffling suffers from low execution efficiency due to fine-grained
random I/O access patterns [69]. Striking a good balance between sampling variance and
efficiency will be key to stable and fast model training.
Graph sampling induced bias. The existence of non-linear layers in GNNs induces
non-zero output bias even though graph sampling itself is unbiased:

EÑ∼N

σ(∑
v∈Ñ

xv)

 ̸= EÑ∼N

∑
v∈Ñ

σ(xv)

 , Ñ is uniformly sampled from N , σ is non-linear.

Thus, we derive an upper bound using the Cauchy–Schwarz inequality and seek methods to
minimize the bound instead (two-stage sampling shown here):

1

2
E
[
∥ĝB2 −∇F (θk)∥22

]
≤ E

[
∥g̃B2 −∇F (θk)∥22

]
+ E

[
∥ĝB2 − g̃B2∥22

]
. (3.7)

Similarly to mini-batch sampling variance, the approximation errors of graph sampling are
also additive for each stage. While the additive errors are likely to impede model convergence,
the decoupling of sampling strategies unblocks the opportunities of choosing the best-suited
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algorithms based on hardware characteristics at each stage. Co-designing the sampling
algorithm benefits from much faster training runtime, potentially offsetting the effect of
slower model convergence.
Conclusion. This section presents a general analysis of the gradient errors in GNN training
with multistage sampling. Key conclusions, given in Eqs. (3.5) to (3.7), can be summarized
as the following takeaway message: model convergence with multistage sampling is bounded
by the combination of gradient estimation variance and approximation error at each stage.

Leveraging the insights gathered from Sections 3.2 and 3.3, this thesis now describes two
systems for large-scale GNN training. They are rooted in two slightly different hardware
setups, but both are widely accessible to machine learning practitioners.
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Chapter 4

Hanoi: Fast and Accurate Out-of-Core
GNN Training

4.1 Introduction

Scaling the training of graph neural networks on massive graphs will open up many new real-
world applications. The practice of single-node, in-memory GNN training sets a scalability
limit when datasets become much larger than DRAM of a single machine, which is the central
issue to be discussed in this chapter. Two standard techniques to mitigate the capacity issue
are the use of a distributed-memory cluster and secondary storage (e.g., local or remote SSD,
HDD). Much recent work has focused on distributed GNN training [27, 62, 70–75], which
has been shown to be bounded by network I/O frequently [27, 62, 70, 74, 76]. Distributed
hardware also imposes a natural cost barrier for many individuals and organizations. In this
chapter, we consider a cheaper alternative, out-of-core GNN training on a single machine.
Our target is the ordinary servers employed by the cloud providers or individual practitioners
for machine learning. Such machines usually do not have a gigantic amount of main memory,
but are equipped with abundant secondary storage, which can store the full dataset in formats
that facilitate pre-processing and training.

Nonetheless, achieving effective out-of-core GNN training is nontrivial if we just trade
network I/O in distributed training for storage I/O in out-of-core training. Modern storage
technology such as NVMe SSDs, though very fast by storage standards, remains an order
of magnitude slower than DRAM. The fine-grained and irregular access patterns during
mini-batching exhibit an inherent mismatch with the block-addressable interface of SSDs,
causing read amplifications and further reducing the effective bandwidth available for training
(Fig. 4.1). Thus, simply treating the secondary storage as a memory extension (e.g., with
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Figure 4.1: Mini-batch sampling in GNNs over external data. Feature gathering incurs fine-grained
random accesses, causing under-utilization of IO bandwidth.

mmap) is a non-solution; we measured an order of magnitude slowdown of training throughput
on a machine equipped with a fast local SSD (Section 4.4.2).

In this thesis, we adopt a drastically different approach by co-designing the sampling
scheme in GNN training to accommodate the secondary storage. The central idea in our
approach is to separate GNN sampling into two stages, one coarse-grained and one fine-
grained, so that the storage I/O is decoupled from the data intensive sampling stage in the
existing GNN training pipeline. The coarse-grained “macro-batch” sampling stage precedes
the current mini-batch sampling step. While the macro-batches are directly drawn from the
secondary storage and requires bulk I/O, it resides in the memory, serving as the staging
area for the subsequent mini-batch preparation steps. The small and irregular data accesses
incurred by mini-batch sampling and feature gathering are then confined entirely within the
fast main memory. We show that decoupled I/O accompanied with extensive pipelining and
data reuse techniques could fully overlap the I/O overhead.

However, the introduction of macro-batches inevitably changes the construction of mini-
batches, which might have undesirable effects on the model training. To guarantee both
runtime performance and model quality, we propose an accuracy-aware partition-based sam-
pling algorithm combining the insights from a comprehensive accuracy study. First, we design
a lightweight but highly efficient GNN-aware graph partitioner (GAP) that simultaneously
balances labels in each partition and mitigates neighbor loss. During macro-batch sampling,
a small portion of hub nodes are permanently pinned inside the memory and participate
in the mini-batch sampling steps. The augmentation of hub nodes contributes to relatively
isolated nodes and partitions, which helps recover the model accuracy at a low space and
computation cost.

We realize the system and algorithmic techniques above into Hanoi, a GNN training
system capable of handling graph datasets much larger than the available memory budget.
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Compared to prior out-of-core methods, Hanoi provides a much better trade-off point of
model quality and training time, achieving almost identical model accuracy with comparable
runtime performance as in-memory training, while prior methods either fall short in model
quality or exhibit substantial slowdown (Table 4.1). We show that Hanoi achieves comparable
training throughputs with in-memory training while saving up to 85% of main memory budgets.
Particularly, we show much improved accuracy over MariusGNN [37], an existing out-of-core
GNN training system sharing a similar two-stage batching design, but lacking the accuracy
aware components that makes Hanoi truly attractive.

Table 4.1: Comparison of model accuracy and runtime between in-memory training baseline and
recent out-of-core solutions. Worst results in each column are emphasized in red.

Method ∆Accuracy(%) Runtime Memory(GB)
In-Memory [9] 0 1× 407
MariusGNN [37] -3.56 up to 1.08× 64
Ginex [36] 0 up to 73.1× 64
This work -0.14 up to 1.67× 64

In summary, this work makes the following contributions:

• We study a practical but under-explored scenario for training GNNs using secondary
storage as a cost-effective approach to scale up GNNs to massive graph datasets.

• An extensive empirical analysis of partition-based sampling that identifies requirements
to minimize the accuracy loss of GNN models. Based on this, we propose accuracy-
aware sampling techniques including GNN-aware graph partitioning and hub nodes
augmentation.

• An efficient implementation of Hanoi with easy-to-use interfaces that scales single-node
GNN training to larger-than-memory datasets without sacrificing accuracy.

• A detailed evaluation that demonstrates accuracy, throughput and model accuracy
benefits of Hanoi.

4.2 System Design of Hanoi

This section describes the system architecture of Hanoi. Hanoi is designed to train GNNs
on massive graph learning datasets with few assumptions on the hardware requirements.
Particularly, unlike cache-based solutions [36, 77] requiring high-end NVMe SSD arrays
for good performance, it works equally well on machines with fast local SSDs or slower
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networked storage. Hanoi also handles graph data preprocessing with limited memory
budgets. Previous works [37, 78], though capable of training the model in an out-of-core
fashion, usually demand a high-memory fat node for data preprocessing, which compromises
the original purpose of an out-of-core system.

4.2.1 I/O Decoupling with Multistage Sampling

The most significant challenge to out-of-core GNN training is the inherent mismatch between
the fine-grained random data accesses and the block interface of secondary storage. When
exposing the storage interface directly to the fine-grained I/O, it is common to observe sub-
stantial performance from read amplification and high I/O contention. Although approaches
such as Ginex and GIDS [36, 77] propose to design better caching policies to reduce I/O
pressure, their mitigation does not solve the root issue. Therefore, they are still bounded by
I/O with limited speedups and depend on expensive SSD RAID arrays to achieve satisfiable
performance.

While in Hanoi, the main idea of leveraging the multistage sampling paradigm is able
to decouple the coarse-grained storage I/O from the fine-grained sampling stage. When
mapped to the abstraction in Fig. 3.1, the lower and higher memory tier correspond to
secondary storage and host memory, respectively. To achieve substantial I/O savings, we
co-design samplers at the secondary storage tier (S1) to (1) generate much less I/O traffic
(CS1(BK)/K ≪ CS(B)) and (2) in more storage-friendly patterns (fully utilizing the storage
bandwidth with minimal read amplification).

Specifically, Hanoi adopts a combination of partition-based subgraph sampling and hub
nodes augmentation to implement S1, which we denote as macro-batch sampling below.
First, Hanoi partitions and reorders graph structures and features into coarse-grained blocks
in a preprocessing step, similarly to prior out-of-core systems on graph analytics [79–81].
The partitions are stored contiguously in the secondary storage for ease of access. During
preprocessing, Hanoi also selects a subset of nodes as hub nodes and permanently pins the
associated graph structure and feature data in host memory. For each training epoch, graph
partitions are randomly shuffled to guarantee randomness in stochastic training. A designated
number of graph partitions with their associated feature partitions are periodically selected,
loaded in host memory and augmented by the hub nodes to construct the macro-batch.
Therefore, the normalized working set of macro-batch sampling in Hanoi is bounded by
the ratio of non-training nodes to training nodes in each partition, which stays relatively
fixed under different batch sizes. We compare the normalized working set sizes of S1 and the
neighbor sampling method in Fig. 4.2, evaluated on the papers dataset and using a fanout
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of 10,10,10 for neighbor sampling. Clearly, the first-stage sampling in Hanoi is superior to
neighbor sampling unless the number of training examples becomes excessively large (>100K).
Such large batch sizes are impractical since the working set would easily exceed GPU memory.
For more realistic settings when the batch size is around 1000, the normalized working set
size in Hanoi is 81.4% less than neighbor sampling. Taking the more storage-friendly I/O
access patterns of Hanoi into account, Hanoi achieves even more I/O cost savings effectively
compared to neighbor sampling.
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Figure 4.2: Comparing the normalized working set sizes of the first-stage sampler S1 in Hanoi with
neighbor sampling.

4.2.2 Hierarchical Pipelining

In this section, we describe deep and hierarchical pipelines of the complex stages in Hanoi to
utilize all hardware components simultaneously. Pipelining in Hanoi is enabled in different
granularity, at both the macro-batch level and mini-batch level. I/O and compute are not
only pipelined in each sampling stage but also across stages, where the mini-batch pipeline is
nested within each step of the larger macro-batch pipeline.

First, we use double buffering in the CPU memory to overlap coarse-grained I/O from
secondary storage and necessary computation allocated to CPU to construct from fragments
of data a complete macro-batch graph. Storage I/O is immediately issued for the next
macro-batch before macro-batch construction completes. Meanwhile, we issue the nested
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mini-batch pipeline for the current macro-batch step. The pipeline consists of mini-batch
sampling on CPU, bus transfer and computation on GPU. It is fired once the dependent
macro-batch graph becomes available. We summarize the pipeline organization in Fig. 4.3.
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Figure 4.3: Proposed GNN macro-batch and mini-batch training pipeline in Hanoi

Moreover, inspired by data echoing [82], which reuses a mini-batch to accelerate training
of convolutional neural networks and transformer models, Hanoi takes advantage of cost-free
macro-batch reuse to further overlap I/O in GNN training. Our idea is to repeatedly use the
current macro-batch for training while waiting for storage I/O to finish of the next macro-
batch. Macro-batch reuse is beneficial when the latency of I/O stage in the macro-batch
pipeline is longer than the combination of in-memory graph construction and the nested
mini-batch pipeline. It essentially harvest the otherwise idle CPU and GPU power to perform
more iterations of model updates at no extra cost. We define “reuse factor”, the number of
passes for which the nested mini-batch pipeline has iterated over the macro-batch data. To
prevent models from overfitting into a small subset of data, we judiciously limit reuse factors
in Hanoi to 4, as shown by prior works [68, 82] to have no negative effects on the final model
quality.

4.2.3 Overall System Architecture

Finally, we illustrate the overall Hanoi system architecture in Fig. 4.4. To improve I/O
efficiency, the graph structure and feature data are divided into coarse-grained blocks, each
of which is laid out contiguously in the secondary storage. For the first-stage macro-batch
sampling, we randomly shuffle the partitions and select a few of them each time to move to the
main memory, constructing the macro-batch graph and features. Then, in the second-stage
mini-batch sampling, since data are resident in relatively fast host memory, we perform the
fine-grained neighbor sampling algorithm as usual. Different stages of sampling, I/O and
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compute are pipelined to guarantee an ideal overlapping of secondary storage I/O, mini-batch
sampling, PCIe transfer and GPU model compute.
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Figure 4.4: The overall algorithm system co-design of Hanoi.

4.3 Accurate Macro-Batch Sampling in Hanoi

The introduction of the macro-batch stage into the GNN training pipeline permanently
changes how the mini-batches are sampled from the original datasets. As a result, it might
cause unexpected repercussions to the model quality, exemplified by Table 4.2, as the simple
random partition-based method by MariusGNN causes noticeable accuracy drops.

Table 4.2: Accuracy drops of MariusGNN compared to the in-memory baseline. This evaluation uses
a 3-layer GraphSAGE model, neighbor sampling with fanouts of 15,10,5 and a batch size of 1000.

Buffer/storage ratio arxiv flickr ogbn-papers mag240m-c
1/8 -2.5 -2.7 -1.2 -1.0
1/16 -3.5 -3.4 -1.7 -1.8

In this section, we counteract the undesired effects by dissecting the macro-batch sampling
procedure with empirical experiments. We argue that neighbor loss incurred by inadvertently
sparse macro-batches and biased distribution of the training examples play significant roles
in the degrading model quality (Section 4.3.1). Based on the findings, we propose two
mitigation techniques, namely GNN-aware graph partitioning (GAP, Section 4.3.2) and hub
nodes pinning (Section 4.3.3). GAP balances between edge cuts and training bias of graph
partitions by imposing a novel loss objective in the underlying partitioning algorithm, while
hub nodes enables Hanoi to go beyond partition-based batching: pinning a small portion
of hub nodes in the macro-batch graph turns out sufficient to restore the model accuracy
almost entirely.

43



Table 4.3: Over-sparsification caused by the macro-batch sampling in MariusGNN. “Subgraph (1/n)”
means the in-memory subgraph created by MariusGNN by sampling 1/n of all nodes.

Datasets arxiv flickr papers mag240m-c
No Sampling 14.4 9.9 41.4 19.1

Subgraph(1/8) 2.2 1.3 19.4 4.8
Subgraph(1/16) 1.0 0.7 17.9 3.8

4.3.1 Avoiding Pitfalls in Macro-Batch Sampling

Neighborhood Loss

Since GNNs learn the output node embeddings from the input features and its neighborhood
structure jointly, it is critical to retain rich graph topology information during GNN sampling.
However, from the statistics in Table 4.3 we observe that in MariusGNN, most of the neighbors
are thrown away in the excessively sparse macro-batch subgraph. This is understandable
since MariusGNN adopts a structure oblivious method, i.e., random partition-based batching,
to construct the macro-batch. For cases where the original graphs are already sparse (e.g.,
arxiv, flickr in Table 4.2) and the generated macro-batch subgraph has only one or two
edges per node, the accuracy degradation has been the most severe.

On the other hand, retaining the complete neighborhood structure for a large amount
of nodes is infeasible due to neighborhood explosion. Thus, instead of including the entire
multi-hop neighborhood, we conduct a sensitivity analysis to determine how to select the
most influential nodes for given training examples. As illustrated in Fig. 4.5, nodes with high
importance should be retained, while those of low priorities could be discarded safely.

(a) original graph (b) randomly dropping
50% nodes

(c) structure-aware
dropping 50% nodes

Figure 4.5: A comparison of neighborhood selection strategies. Dashed nodes are dropped, while
blue ones remain. Edges between selected nodes are kept.

Motivated by the observation, we conduct experiments with three representative GNN
datasets (arxiv [83], flickr [49] and amazon-cobuy [84]) to study the influence of node
selection on model quality. The protocol below is followed to train a three-layer GraphSAGE
model until convergence:
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• Given a batch of randomly sampled training nodes B, the L-hop neighborhood is
extracted from the original graph.

• We compute a score for each node in the neighborhood based on a scoring function and
discard the bottom-k% nodes.

• The subgraph induced by the remaining nodes and B is used as the mini-batch to
update the GNN model.

We test three types of scoring functions, each representing a different neighborhood selection
(or dropping) policy. 1) random: random scoring function, which is oblivious to the graph
structure and simulates MariusGNN. 2) neighbor: 1-hop neighbors of B are assigned a score
of 1, while others get random scores in [0, 1). This strategy favors direct neighbors of B
while prunes non-direct neighbors randomly. 3) influence: inspired by a previous theory on
GNNs [13], we use the landing probability of reverse L-step lazy random walks (RLRW) as
the scoring function:

RLRWB(v) =
∑
u∈B

RLRWu(v) = ÃLeB (4.1)

where Ã is the transition matrix of RLRW and eB is a multi-hot vector with ones representing
nodes in B. If the theory holds, this function computes the influence of node v to output
embeddings directly.
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Figure 4.6: Sensitivity of GNN accuracy to neighborhood loss under different policies. X-axis means
the number of nodes left after discarding the bottom ranked nodes.

We perform a sweep of k from 0 to 100 and visualize the results in Fig. 4.6. Among others,
we have three major observations:

• GNN accuracy generally drops with higher neighborhood loss but different policies
affect the sensitivity differently.

• The random policy, agnostic to the graph structure, leads to the worst degradation of
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model quality as more nodes are discarded. This curve explains the accuracy losses of
MariusGNN, since its random partition-based macro-batches discard neighbors in a
similar randomized fashion.

• With neighbor and influence policies, GNNs are much more resilient to neighborhood
loss. In the influence policy, dropping out 80–90% of the low-ranked nodes does
not cause visible accuracy loss. Meanwhile, the simpler neighbor policy performs
surprisingly well, almost overlapping with the more sophisticated approach when up to
60% nodes are discarded.

These small-scale experiments deliver a strong signal of how to alleviate the model quality
issues due to neighborhood loss. By prioritizing the existence of important neighbors in the
macro-batch, out-of-core GNNs can be made more resilient and accurate.

Partitioning-induced bias

Graph partitioning is an essential step to yield high I/O efficiency in first-stage sampling of
Hanoi (Section 4.2.1). The conclusion from the last subsection on avoiding neighborhood
loss suggests clustering nodes when performing the graph partitioning. However, we find
that graph clustering alone could be harmful to GNN training. Graph partitioning has
another side-effect of co-locating nodes in the same group, limiting the randomness of training
examples to be sampled. Due to network homophily [85], clustering-based graph partitioners
tend to put together similar nodes, creating highly skewed node partitions. The skewed node
distribution, or bias, in each individual partition could lead to highly variant mini-batches
and stagnate the model convergence [48].

We echo the observation in our empirical analysis. The bias of training examples is
usually represented with their label distributions. As such, we apply a state-of-art min-cut
graph partitioner METIS [86] to arxiv and validate the impacts of clustering bias to the
model accuracy. Not surprisingly, the partitioner in MariusGNN is not plagued by the
clustering effects due to its random nature, although it still affects the accuracy in another
way (excessive neighborhood loss).

In summary, due to the complex interplay between the neighborhood structures and node
similarities, the ideal macro-batch sampling algorithm should be able to accommodate two
seemingly contradictory objectives: minimizing neighborhood loss while ensuring a balanced
distribution of training labels. In the following, we show how it could be achieved by a novel
GNN-aware graph partitioning algorithm along with other enhancements.
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4.3.2 GNN-Aware Graph Partitioning

As the first step to circumvent the accuracy pitfalls in macro-batch sampling, we design
a GNN-aware graph partitioner (GAP) to meet the unique combination of requirements.
Specificially, we aim to achieve with GAP two objectives, 1) co-locating training nodes and
important neighbors in the same partition, and 2) balancing the label distribution of training
examples for each partition. Moreover, the runtime and space complexity should scale well for
the massive graphs and relatively large partition numbers k to ensure sufficient randomness
of the macro-batch.

Based on a streaming graph partitioning algorithm Fennel [87], GAP combines both
requirements in its basic design. GAP is lightweight and fast, running in O(|E|+ |V | log k)
time and O(|V |+ kL) space, where k denotes the partition number and L keeps the types of
labels. We made several non-trivial improvements to Fennel in terms of functionality and
runtime, as explained below.

Extended Functionality

Fennel treats k-way min-cut balanced graph partitioning as an objective optimization
problem. Given a partial k-way partitioning P = (V1, . . . , Vk), Fennel computes the
partition P (v) of a new node v based on the maximization of score function δg(v, Vi):

P (v) = argmax
i∈{1,...,k}

δg(v, Vi); δg(v, Vi) = |N(v) ∩ Vi|︸ ︷︷ ︸
1

− δc(|Vi|)︸ ︷︷ ︸
2

.

Term 1 counts the neighbors of v in Partition i; while Term 2 is a monotonically increasing
function on the partition size for the purpose of balancing, which could be interpreted as the
marginal cost of adding v to Vi.

Vanilla Fennel has no support for balancing node labels in each partition. In order to
achieve label balancing, we separate the monolithic balancing function δc(|Vi|) into multiple
independent label-wise components δc(|V (ℓ)

i |/µℓ) for Label ℓ = 0, . . . , L− 1, where µℓ is the
ratio of nodes labeled ℓ in V . To decide the partition of node v with Label ℓ, we consider the
label-wise score function instead:

δg(ℓ)(v, Vi) = |N(v) ∩ Vi| − δc(ℓ)(|V (ℓ)
i |/µℓ). (4.2)

We list the algorithm details in Algorithm 2.
1Instead of a standard heap, our implementation uses the ordered set data structure where update can be
performed with one remove and one insert in O(log k).
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Improved Runtime Complexity

While many prior works hold a common opinion that Fennel has a runtime complexity of
O(|E| + |V |k) [88, 89], we improve the algorithm to O(|E| + |V | log k), making it scale to
much larger k. Note that a reasonably large k is desired from Section 4.3.1 for combating
skewness in mini-batches.

The complexity improvement is based on the idea of neighbor-guided search and main-
taining balancing scores in a max-heap. To get the partitioning assignment for a node, prior
implementations usually examine all k partitions which takes O(k). Our key observation is
that for sparse graphs with a majority of nodes having less than k neighbors, it is sufficient to
look at a subset of k partitions. It is done by comparing two candidate choices, the partition
with the highest balancing score (Line 17) and the result of neighbor-guided search (Line 18
– 25). Retrieving these two candidates costs O(log k) and O(deg(v)), respectively. Looping
over all nodes in V yields a runtime complexity of O(|E|+ |V | log k). Regarding the space
overhead, our partitioner inherits the advantage from Fennel as a streaming partitioner,
requiring almost no extra memory for storing the graph topology. Overall, it only takes
O(|V | + kL) space, where O(|V |) is essential for keeping the partitioning assignments of
nodes in V , and an extra O(kL) is required by the data structures keeping the label-wise
balancing scores.

In summary, combining all these improvements, we successfully design a graph parti-
tioner that suits the demands of Hanoi. Our partitioner takes only 8.4min to partition
ogbn-papers, a billion-edge graph into 1024 buckets within a 64GB memory budget, while
the graph partitioner [86] commonly adopted in other GNN systems take a peak memory of
600GB and runs for ∼1h 20min for 64-way partitioning. We conduct a more comprehensive
performance evaluation of our partitioner in Section 4.4.2.

4.3.3 Hub Nodes Augmentation

Our graph partitioner is designed to explicitly mitigate neighbor loss, but not necessarily
prioritize important neighbors. For example, if a target node is at the boundary of a
community, it may be forced to lose important neighbors already assigned to another partition.
However, directly incorporating the important score during partitioning would again make
the partitioner too expensive and impractical, since it requires us to compute scores for all
|V |2 node pairs. Therefore, we partition the graph without explicitly considering the priority,
but add this consideration after partitioning to compensate potential loss.

Our approach is based on a key observation in real-world graph data: the existence of
heavy-hitters. Those highly connected nodes are globally influential hubs to potentially many
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training nodes. Then, our idea is to identify the hubs as a preprocessing step and then buffer
the data of pivots in the memory permanently as a prioritization of the highly influential
nodes. Hubs are thus always available when we form a macro-batch.

We select hubs in the following steps after graph partitioning. For each partition, we
compute the influence score for each node in the graph with respect to the partition, i.e.,
the accumulated score over each training node in the partition with Eq. (4.1). This is an
indication of how influential each node is to each partition. We then sum up the scores over
all partitions for every node, and choose the top-k scored nodes as the pivots. As this is a
preprocessing step that is performed only once for a given graph, the cost is amortized over
the training process.

4.4 Evaluation

4.4.1 Experimental Methodology

Evaluation Hardware. We use two machines to conduct our experiments. Machine 1 (MA1)
is a typical workstation with fast external storage, while Machine 2 (MA2) is a compute node
in the cloud with slower external storage. We will show that our system can perform well on
both machines, even though the speed of external storage varies.

• MA1: Intel Core i9-10920X CPU (24 vCPUs), NVIDIA RTX 4090 GPU, up to 64GB
memory and local SSDs up to 4.8GBps I/O bandwidth. Machine 1 is optimized for
random IO, delivering ∼1 million IOPS with 4KB native block sizes.

• MA2: Intel Xeon Silver 4215 CPU (16 vCPUs), NVIDIA Titan Xp GPU, up to 256GB
memory and network storage up to 2GBps I/O bandwidth. Machine 2 does not handle
random I/O as well as Machine 1, with a much larger native block size of 128KB.

Datasets. We use large benchmark datasets listed in Table 4.4. Mag240M and OGB datasets
come from the Open Graph Benchmark [33]. Mag240M-C is the subgraph extracted from
Mag240M that contains only paper citation edges. All graphs are made undirected if they
are originally not. The data statistics after the transformation are listed in Table 4.4. On
each dataset, the task is to predict node labels. Although the small dataset arxiv easily
fits into the main memory in our setting, it is included in the evaluation to demonstrate the
competitive model quality.
GNN models and hyper-parameters. We evaluate two representative GNN architectures,
GraphSAGE [9] and GAT [10]. We use a universal setting of 3 layers, a hidden dimension of
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Table 4.4: Summary of evaluated datasets in Hanoi. Graphs are made undirected to achieve
state-of-the-art accuracy for GNN models.

Dataset # Nodes # Edges Feature Train Ratio Size
arxiv 169K 2.3M 128 0.54 123MB
flickr 89K 0.9M 500 0.50 186MB
products 2.5M 123.7M 100 0.08 2.8GB
papers 111M 3.2B 128 0.01 103GB
mag240m-c 122M 2.6B 768 0.01 214GB
mag240m 244M 3.5B 768 0.0045 407GB

256, a learning rate of 1e-3 and a dropout of 0.5. Neighbor sampling [9] is adopted as the
mini-batch sampling method since it is the de facto approach in large-scale GNN training.
We set the batch size to 1000 and a fan-out of (15,10,5) as in previous works [36, 37, 70, 71,
90].

4.4.2 Runtime Performance

We evaluate training speed to show that our solution incurs marginal slowdown compared to
in-memory training (NS-Mem), but is dramatically faster than a straightforward solution that
simply uses the memory as a cache of the external storage (NS-Ext).
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Figure 4.7: Per-Epoch Training Time of different implemntations under varying memory budgets.
NS-Mem is not shown on MA1 as it fails to run due to OOM.

Fig. 4.7a compares the training time per epoch for papers on MA1, with various memory
budgets from 32GB to 64GB. We observe that Hanoi is significantly faster than the NS-Ext

method, thanks to the sequential accesses enabled by our partitioning and the coarse-grain
batching strategy. More importantly, the speedup is larger when given a smaller memory
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budget, where our method runs slightly slower when decreasing the memory capacity, but
NS-Ext suffers a significant slowdown. This means that our method is resilient to the memory
capacity and can be scalable to larger datasets. By comparing Hanoi(-r) (batch reuse
disabled) and Hanoi, we also see that enabling batch reuse does not increase training time
proportionally, because it does not add any extra I/O time. We observe the same trend for
mag240m-c, as shown in Fig. 4.7b.

We also evaluate the training speed on MA2 with up to 256GB memory, but a slower
storage than that of MA1. Fig. 4.7c shows the epoch training time of mag240m-c on MA2.
Note that in this figure the y-axis is in log-scale. As the external storage on MA2 is attached
via the network, NS-Ext becomes extremely slow, e.g., up to 73.1× slower than Hanoi which
only incurs sequential I/O traffic. However, Hanoi is still only slightly slower than NS-Mem.
This is because Hanoi can better utilize the I/O bandwidth, and also the batch reuse can
help hide I/O overhead as the I/O time is overlapped with the computation time.

I/O Bandwidth Utilization

To understand the training speedups in detail, we compare the I/O performance of our
method with the mmap method in Fig. 4.8. We can see that mmap system struggles to saturate
the I/O bandwidth while constantly incurring I/O traffic, a typical signal that the system is
thrashing. On the other hand, Hanoi exhibits much higher peak I/O utilization than mmap.
The intermittent I/O bandwidth peaks in Hanoi are separated with gaps, where the current
macro-batch graph is being constructed or waiting for the previous macro-batch to be fully
consumed.
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Figure 4.8: Comparing the I/O Bandwidth utilization of Hanoi with the mmap-based solution on
MA1 under 48GB memory budget. Each data point is sampled every second over a 10-minute time
period.
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Figure 4.9: Comparing the GPU utilization of Hanoi with the mmap-based solution on MA1 under
48GB memory budget. Each data point is sampled every second over a 10-minute time period.

GPU Utilization

The other aspect to understand the efficiency of GNN training is to profile the GPU utilization.
In Fig. 4.9 we compare the GPU utilization of Hanoi with the mmap method. It shows clearly
that our method achieves much better GPU utilization than mmap. The key difference is that
when using mmap, the GPU spends a lot of time waiting for random I/O, making itself heavily
underutilized, whereas Hanoi systematically hides the I/O overhead with careful decoupling
and pipelining, shifting the system bottleneck from disk I/O to the GPU side.

Graph Partitioning Performance

Finally, we compare the execution time of our graph partitioner GAP with Fennel in
Fig. 4.10. We observe that our partitioner consistently overperforms Fennel, while the
performance gap increases rapidly as the number of partitions k increases. This improvement
on time complexity is crucial for scaling up to large datasets, as more partitions may be
needed by larger datasets to provide enough randomness in our macro-batching strategy.

4.4.3 Model Accuracy

We perform a comprehensive evaluation on GNN model accuracy, to show that our batching
strategy is practical and accurate.

Model Convergence

We demonstrate the convergence rate in wall clock time for a wide range of datasets in
Fig. 4.11 and Fig. 4.12 to get a detailed look at the training efficiency of Hanoi. Again,
we use in-memory training with neighbor sampling as the accuracy baseline (NS-Mem) and
compare with various methods.
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Figure 4.10: Comparing the execution time of GAP partitioner with Fennel under different number
of partitions.

• NS-Ext: Similar to Section 4.4.2, NS-Ext utilizes mmap with over-provisioned I/O threads
to serve as a decent out-of-core GNN training baseline.

• Marius: We ported MariusGNN [37] into our framework and report it as Marius in the
figure. Our system yields better training performance than the original implementation
in MariusGNN due to better I/O handling and hierarchical pipelining.

• Hanoi: Our method with accuracy-aware macro-batch sampling techniques, including
macro-batch reuse.

All configurations are run on MA1 in this section except NS-Mem, which is run on MA2 with
sufficient memory capacity for in-memory training.
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Figure 4.11: Model convergence in wall-clock time (small datasets).

For smaller graph datasets in Fig. 4.11, Hanoi is able to at least match the model
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convergence rate of NS-Mem, the in-memory training baseline without multistage sampling. In
particular, Hanoi converges the fastest for flickr, likely because the edge cuts introduced
by macro-batch sampling act as a positive regularization for the training process. Since small
datasets can be entirely cached in host memory, there is no visible difference between NS-Mem

and NS-Ext. However, Marius suffers from much slower convergence rates and fails to reach
the same accuracy levels as other solutions.
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Figure 4.12: Model convergence in wall-clock time (large datasets).

Fig. 4.12 compares the convergence rates for the three largest datasets. Notably, NS-Mem
fails to run for mag240m since it requires more than 500GB of runtime memory during training
- no machines accessible by us are equipped with sufficient DRAM for this experiment.
However, with Hanoi, we are able to train an accurate GNN model with only 64GB of
memory on MA1, which reaches the target accuracy level more than 5× faster than NS-Ext.
Besides, for papers and mag240m-c, Hanoi is able to catch up with NS-Mem at significant
faster convergence rates than Marius and NS-Ext.

End-to-End Model Accuracy

We compare end-to-end overall accuracy of our system (ours) with the original in-memory
solution (base) and the out-of-core solution used in Marius (marius). Note that base is run
with enough memory to hold all data in memory, so that there is no accuracy loss. However,
ours and marius are out-of-core solutions, which may affect model accuracy. For each pair
of model and dataset, we train it until convergence and report the test accuracy.

Fig. 4.13a and Fig. 4.13b illustrate the model accuracy of GraphSAGE and GAT re-
spectively. Across all datasets and models, we observe that ours matches the accuracy of
base, while marius suffers a constant accuracy drop. The accuracy gap between base and
marius varies from 1.7% to 3.1%, which is significant in the context of GNN training. This
is expected as marius randomly includes neighbor nodes in their batches, while ours picks
neighbors according to their affinity to the training samples.
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4.5 Related Work

The common practice in GNN training is to use a GNN training framework, e.g., DGL [30]
and PyG [31]. However, they only support in-memory training, i.e., they can not support
datasets larger than the memory capacity. There are a large volume of research efforts to
scale up GNN training, including both algorithmic and system approaches. In the following,
we discuss the mainstream scaling-up approaches and relevant optimization techniques.
Graph sampling for GNNs. Graph sampling has been widely used to solve the neighbor
explosion problem and thus scale up GNNs. Sampling can reduce memory footprint, CPU-
GPU communication cost, and computation of neighborhood aggregation. Current sampling
schemes in GNNs fall into several categories, each differing in the structure of the sampled
data, the size and number of samples, the size of the input nodes to the sampled batch, etc.
There are node-wise neighbor sampling [9, 45, 91], layer-wise sampling [46, 47], and subgraph
sampling [48–50]. The first-stage sampling in Hanoi can be viewed as subgraph sampling,
while the second stage is mainly experimented with node-wise neighbor sampling proposed
by [9], as it generalizes better to a wide range of graph datasets with competitive model
accuracy. However, our approach can be adapted to other schemes as well, which is left as
future work.
Distributed GNN Training. To scale up ML training to massive datasets, a frequently
studied approach is distributed-memory training. There are also a large number of distributed
GNN training systems [27, 42, 51, 52, 55, 62, 70, 72–75, 92]. However, distributed GNN train-
ing often requires frequent and voluminous inter-machine communication, including features,
graph structures, models, and gradients, causing substantial challenges in parallelization,
synchronization, and pipelining.
Out-of-core graph processing. For traditional graph analytics tasks there exist many out-
of-core systems such as Graphchi [93], Chaos [79], COST [94], Mosaic [95], among others [81,
96]. This line of research is valuable and inspirational though not directly applicable to
build efficient out-of-core GNN training systems. Marius [78] and PyTorch-BigGraph [97]
are out-of-core training systems built for “shallow” graph embedding which does not learn
node embeddings from its neighborhood strucure. MariusGNN [37] represents the most
recent efforts in building out-of-core training systems for GNNs. It achieves high training
throughputs through careful management of in-memory buffers, but does not study how
the system design affects accuracy in detail. Our research fills in the gap of both fast and
accurate GNN training in out-of-core settings.
Caching. Caching is a widely-studied optimization technique to improve data transfer in
GNNs. GNS [67], PaGraph [66] and GNNLab [98] all employ GPU memory as a cache of
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main memory and keep likely-reusable data for fast accesses. Ginex [36] is an recent work
that studies using the main memory as a cache of storage that demonstrate good speedups.
It achieves near optimal cache hit rate and improves speed by 1.5-3× over a naive mmap

based system. Nevertheless, none of the approaches fundamentally shifts the bottleneck of
disk-to-memory data transfer. They do not eliminate fine-grained random accesses or consider
the spatial locality, which are critical for accessing data stored in the secondary storage.
Other optimizations. In addition to caching, there are many other efforts on improving
GNN training throughputs by using performance engineering techniques [38, 43, 53, 54, 90, 99,
100]. Notably, FeatGraph [38] does tiling, a typical software optimization to improve cache
performance. SALIENT [90] does pipelining to overlap GPU computation and CPU-GPU
communication. They are all orthogonal to the scaling-up solutions.

4.6 Conclusions

A big limiting factor in the advancement of GNN training is how to scale it to massive data
size. In this work we build an out-of-core training system to scale GNNs beyond the memory
constraint of a single machine. Based on the literature of graph processing, it is not difficult
to design a fast out-of-core system, but it is likely at the cost of degrading model accuracy.
The key challenge in building such a system is how to achieve high training throughputs
without accuracy concerns. Driven by this observation, we carefully design a multistage
sampling strategy to decouple I/O from the rest of data intensive training pipeline. The
resulting system, Hanoi, is the first to achieve fast training convergence (close to in-memory
training) without compromising accuracy.
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Algorithm 2 Lightweight Graph Partitioning with Label Balancing
1: Input: G(V,E) , k: #partitions, Vt: training nodes, yt: training labels (label ids 0, . . . , L− 1), P: the

initial partition assignments for v ∈ V
2: Output: refined partition assignments P
3: n← |V |
4: Initialize a label array y[0, . . . , n− 1] for all v ∈ V
5: y[:]← L , then y[Vt]← yt ▷ Label non-training nodes with id L
6: Create L+ 1 arrays BalanceScores[0, . . . , L][0, . . . , k − 1] ▷ Label-wise balancing scores per partition
7: Initialize BalanceScores following the second term in Eq. (4.2).
8: Create L+ 1 max-heaps Heaps[0, . . . , L] ▷ Keep label-wise balancing scores sorted
9: for ℓ, p ∈ {0, . . . , L} × {0, . . . , k − 1} do

10: Heaps[ℓ].insert((BalanceScores[ℓ][p], p)) ▷ Tuples are ordered lexicographically
11: end for
12: Initialize an array NumNbr [k] with 0’s
13: Initialize an empty queue AdjQ
14: for v ∈ V do
15: ℓ, pv ← y[v],P[v]
16: Move v out of Partition pv: update BalanceScores[ℓ][pv], Heaps[ℓ] accordingly1

17: score1, p1 ← Heaps[ℓ].peek() ▷ 1st candidate partition
18: for u ∈ G.in_neighbor(v) do ▷ Neighbor-guided search
19: pu ← P[u]
20: if NumNbr [pu] == 0 then
21: AdjQ.push(pu) ▷ Book-keep adjacent partitions
22: end if
23: ++NumNbr [pu] ▷ Count #neighbors per partition
24: end for
25: score2, p2 ← maxp∈AdjQ(NumNbr [p]+BalanceScores[ℓ][p]) ▷ 2nd candidate partition
26: if score1 > score2 then
27: pv ← p1
28: else
29: pv ← p2
30: end if
31: P[v]← pv ▷ Completes the assignment for v
32: Move v into Partition pv: update BalanceScores[ℓ][pv], Heaps[ℓ] accordingly
33: while not AdjQ.empty() do
34: NumNbr [AdjQ.pop()] ← 0
35: end while
36: end for
37: return P
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Figure 4.13: Comparison of end-to-end model accuracy.
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Chapter 5

Joestar: Joint Optimization for Efficient
Sampling-based GNN Training on GPUs

This chapter describes the second major work, Joestar, a GPU-centric GNN training
framework for large-scale graphs. Compared to the first work Hanoi, Joestar targets a
different hardware configuration by taking a step back and assuming sufficient amounts of
host memory are available for GNN training. This setting is arguably more common than
out-of-core training, as massive graph data beyond the host memory capacity is not always
available or necessary in every domain. Those with time-sensitive requirements for processing
massive graph data may opt to obtain high-memory nodes (i.e., machines with large RAM
capacity) for in-memory processing when cost is not the primary concern [101]. Under these
circumstances, an efficient GNN training solution for in-memory, CPU/GPU cooperative
settings that can fully utilize the power of GPU hardware is highly desirable.

The major drawbacks of current in-memory training solutions, as demonstrated in Sec-
tion 2.3, fall into two aspects: the significant data loading bottleneck and low execution
efficiency on the GPU. Unfortunately, existing approaches usually treat them as two separate
problems and attempt to address them independently. This isolated view of GNN training
hinders cross-stage optimization opportunities, preventing GPU hardware from reaching
its full potential. In this work, we take a fundamentally different methodology by jointly
considering sampling and model computation in one model optimization workflow. With
multistage sampling (Chapter 3), low GPU execution efficiency still remains as the other
obstacle to scaling up GNN training. In consequence, the joint optimization of sampling and
model computation stages plays a critical role in improving the utility of GPU hardware. It
consists of a unified compilation view of GNN training, novel cross-stage operator fusion and
profile-guided performance optimizations, greatly alleviating kernel orchestration overheads
but also reducing excessive computation and data movements. Eventually, we demonstrate
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that Joestar achieves state-of-the-art training performance for billion-edge datasets with a
single GPU.

5.1 Background and Motivation

5.1.1 Related Works

The popularization of deep learning has made GPUs widely accessible in data centers. Large-
scale GNN training is often bottlenecked by CPUs and peripheral buses (e.g. PCIe), with
up to 83% of time spent in host-side data preparation and transfer (Fig. 2.3), leaving GPUs
heavily underutilized. How to better leverage GPU capabilities for training GNNs with
massive graph datasets remains an open question. Among existing frameworks, DGL [30]
has the most comprehensive support for GPU-centric mini-batch training with its support
of on-GPU graph samplers and Universal Virtual Addressing (UVA [102]), a feature that
enables GPUs to directly access data on CPU memory on demand. Recent research has also
focused on performance-critical components of GNN training systems, e.g., reducing I/O
pressure between CPU and GPU using various caching techniques [64–67, 98], accelerating
graph sampling on GPUs [41, 103, 104] and faster GNN computation kernels [103, 105, 106].

Unfortunately, most existing works treat these performance challenges independently.
They either focus heavily on the data loading aspect of the problem [64–67, 74, 75, 90, 98] or
mainly target the inefficiency of certain GPU operations, for instance, on-GPU sampling [41,
103, 104] or GNN layer implementations [38–40, 43, 53, 54, 105]. The decoupled approach
to mini-batch GNN training often fails to yield substantial end-to-end speedups and limits
opportunities for cross-stage optimization. A global perspective and a unified optimization
methodology are essential for efficient GPU-centric mini-batch GNN training.

5.1.2 Key Operations in Mini-Batch GNN Training

Mini-batch GNN training involves a wide variety of GPU kernels. This diversity arises from the
range of operations required for mini-batch sampling, graph structural transformations, and
GNN architecture computations. To better understand the long-tail workload characteristics
of mini-batch GNN training, we provide a comprehensive categorization of relevant operations,
with a focus on those beyond core GNN layer computations.
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Operations for Model Computation

GNN model computation consists of two categories: sparse and dense operations. Message
passing layers rely on sparse matrix computations such as SpMM and SDDMM, where the
sparse component is the adjacency matrix derived from sampled mini-batch graphs. Other
standard neural network constructs, including linear layers, activation layers, and residual
connections, are implemented as dense matrix computations. Section 2.1 discusses the
computation kernels of GNN training in more detail.

Operations for Graph Structural Transformation

Graph structural transformation is a distinct category of operations in GNNs, yet it is often
overlooked in prior literature. These transformations entail property queries, mutations
and format conversions of target graphs. They are prerequisites to sparse or dense model
computations as defined by specific GNN architectures. Typical examples include in/out-
degree computation, edge addition/deletion and graph reversal. Although graph structural
transformation is not as data intensive as model computation, they contribute non-negligible
overheads to overall training due to disproportionally large number of kernels they require.
We summarize graph structural transformation as operations over sparse adjacency matrices:

1. Slicing: Extracting specific rows or columns from a sparse matrix..

2. Compaction: Removing empty rows and columns from the input sparse matrix.

3. Transposition: As its name suggests, transposing the sparse matrix.

4. Addition/subtraction: Performing addition or subtraction of one input sparse matrix
with another sparse matrix.

5. SpMV: Multiplying the input sparse matrix with a query vector to retrieve information.

Operations for Graph Sampling

Graph sampling is another defining class of operations in GNN training. Prior works [41,
104] uses two sampling operations as the foundation of different graph sampling algorithms.
We adopt the abstraction for its simplicity and generality.

1. Individual sampling: individual_sample(edge_prob, K)

2. Collective sampling: collective_sample(node_prob, K)
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Individual sampling samples neighbors for each node independently under the probability
distribution edge_prob and the number of samples K. Collective sampling chooses nodes from
the graph following the distribution node_prob with a budget K and then slices destination
nodes of the graphs to sampled nodes. These two primitives serve as building blocks for more
complex sampling strategies used in practice.

5.1.3 Challenges of GPU-Centric Mini-Batch GNN Training

As noted in previous chapter, data loading remains the primary bottleneck of in-memory GNN
training, even when graph data can fit into the CPU memory. While Hanoi addresses this
issue for extreme out-of-core configurations via extensive algorithm-system co-design, it is still
unclear how best to such an approach to in-memory training. A careful examination of the
hardware differences between the two settings is essential. In particular, the byte-addressable
DRAM does not suffers from read amplification of fine-grained random I/O. As a result,
the benefits of sequentializing data accesses during first-stage sampling become marginal,
whereas the extra overhead of macro-batch graph construction can become burdensome. On
the other hand, multistage sampling remains appealing in bridging the performance gaps
from CPUs and PCIe to GPUs due to potentially reduced sampling work on CPUs and I/O
traffic over PCIe. These observations highlight the need of multistage sampling schemes
tailored specifically for in-memory training in order to shift more of the intensive sampling
work to GPUs.

Moreover, in terms of GPU efficiency, mini-batch GNN training suffers from a unique
pattern of hardware under-utilization compared to deep learning in other areas such as image
or language modeling. In those domains, training is typically dominated by a small set
of compute-intensive kernels (e.g., 2D convolution, large-size GEMM, self attention). In
contrast, GNN demonstrates a long-tail distribution of kernel types, including sampling
operators, graph structural transformations, both sparse and dense model layers. As such,
GNN training is neither compute-bound nor by GPU kernel throughputs alone. We show this
phenomenon in Table 5.1. “Avg. Compute (us)" indicates the average latency of computation
kernels on the GPU and “Avg. Memory (us)" for memory kernels. GCN is trained on the
products dataset, which fits into the memory of our GPU hardware (RTX 4090), so both
sampling and computation happen entirely on the GPU. The table shows that GCN models
have significantly more kernel invocations but much lower per-kernel latency compared to
ResNet50. This pattern corresponds to lower GPU activity ratios, suggesting that the GPU
stays idle for a considerable portion of GCN training time. Note that the GPU activity
ratio only indicates whether any part of GPU hardware is active. It does not reflect peak
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Table 5.1: GPU kernel statistics of two mainstream models for image classification (ResNet50 [63])
and node classification (GCN [8]). The number in the parenthesis following “GCN" means the batch
size used for training.

Models Kernels/Layer Avg. Compute (us) Avg. Memory (us) Activity
ResNet50 15 121.6 84.6 91%
GCN (1000) 78 17.2 3.4 35%
GCN (8000) 78 72.0 15.3 69%

computation throughputs (e.g. FLOPS utilization, floating point operations per second).
Thus, realistic hardware utilization (FLOPS utilization) is likely even lower. On the other
hand, improving computation kernels alone would yield limited results due to Amdahl’s Law,
as there is no positive impact on GPU activity ratios.

In the next two sections, we present the system architecture and optimizations of Joestar

to systematically address the inefficiencies of GPU-centric mini-batch GNN training.

5.2 System Design of Joestar

This section describes the high-level system design of Joestar focusing on the multistage
sampling schemes and work partitioning between CPUs and GPUs. The goal is to expose
overheads in model training on GPUs and reveal a broad space for optimization in GPU-
centric training. Notably, even without full-fledged GPU optimizations, our system can
already outperform current GNN frameworks [30, 31] by a substantial amount because of
alleviated I/O bottlenecks.

Joestar implements multistage sampling by taking into account the memory hierarchy
between the host (CPU) memory and GPU memory. The training pipeline resembles that
of Hanoi, with a key distinction: second-stage sampling is now co-located with model
computation on the GPU (Fig. 5.1). Thus, the pipeline structure is flattened and simplified,
consisting of three stages similar to conventional in-memory mini-batch training: CPU (red),
bus (yellow) and GPU (green). Double buffering is inserted between pipeline stages for
concurrent operations and better utilization of different hardware resources. Given the target
mini-batch size |B|, CPUs perform the first-stage sampling in a larger batch size |BL|. To
adapt to a wide range of GPU hardware with varied capacities, |BL| is provided to users
as a hyper-parameter tuning knob, as it decides the sizes of generated macro-batches. For
each macro-batch, the GPU conducts multiple iterations of second-stage sampling, feature
gathering and model training until training examples are exhausted. Unlike out-of-core
training in Hanoi, we do not utilize macro-batch reuse in Joestar due to faster first-stage
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Figure 5.1: Proposed GNN training pipeline in Joestar. Heavyweight mini-batch sampling
operations (highlighted) are offloaded to the GPU. Macro-batch sampling has low latency on the
CPU.

sampling for in-memory data and concerns of overfitting (though not observed empirically).

5.2.1 Multistage Sampling in Joestar

Joestar mainly targets in-memory training. The main memory (e.g. DRAM) is more
flexible and capable than secondary storage in out-of-core training, providing orders of
magnitude higher bandwidth and supporting byte-addressable accesses. Thus, the first-stage
samplers of Joestar require much less hardware-specific adaption from the baseline sampling
algorithms. To take advantage of the hardware flexibility, Joestar keep the same algorithm
in mini-batch sampling unmodified, apply them to a larger batch of training examples and
extract the sampled subgraph as the macro-batch. We refer to this method as Large-Batch
Sampling (LBS). LBS requires no algorithm changes, which ensures strong compatibility
with existing implementations. The benefit of LBS comes from the following observation:
as |B| increases, the normalized working set sizes of typical sampling algorithms C(B)/|B|
monotonically decreases due to the data locality inherent in many real-world graphs. As a
result, the overall cost of sampling per epoch becomes lower. We illustrate the observation
in Fig. 5.2. This phenomenon is mentioned in several prior works [68, 107] to achieve cost
savings in mini-batch sampling. These works leverage the workload reduction of LBS but fail
to demonstrate substantial performance speedups against well-optimized baselines based on
single-stage sampling. This is primarily due to the lack of key techniques such as intra-batch
parallelism and joint optimization of on-GPU sampling and computation which Joestar

further builds upon LBS. To the best of our knowledge, Joestar is the first work to discuss
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Figure 5.2: Increasing batch sizes in neighbor sampling has a sub-linear scaling of working set sizes.
Red nodes are training examples to sample from.

the vast optimization space enabled by LBS in GNN training.
In Joestar, second-stage sampling is entirely offloaded to the GPU. To avoid having

to implement a new GPU kernel for each different sampling algorithm, Joestar chooses a
fixed sampling algorithm at this stage. As shown in Section 3.3, the cascading of multiple
sampling stages accumulates approximation errors additively in the forward pass of the GNN
models. To minimize the error introduced by the second-stage sampling, we use neighbor
sampling with very high fan-out parameters (e.g., up to 50 neighbors per node). We notice
that outputs of the second-stage sampler are upper-bounded by the macro-batch subgraph.
Thus, it is less prone to neighbor explosion than sampling in the original graph, which allows
us to adopt the much higher sampling fan-outs. When the macro-batch subgraph is sparse,
such as those generated by neighbor sampling of lower fan-outs parameters, the second-stage
sampling essentially slices the subgraph and extracts the complete neighborhood structures
of training nodes. In this case, no extra graph sampling-induced bias is introduced by the
second sampling stage.

Finally, we remark that LBS leads to slight randomness loss by promoting reuse of the
same sub-sampled macro-batch subgraph for multiple consecutive mini-batches. If the same
node is included in two mini-batches before the macro-batch gets refreshed, its neighbors will
be sampled from the same subset of nodes. However, because the macro-batch are updated
regularly, the randomness loss is negligible to the final model quality, either empirically or
theoretically [68].

5.2.2 Partition-Based Sampling with Historical Embeddings

The decrease in the size of the normalized working set utilized by LBS is most effective for the
family of node-wise sampling methods [9, 91]. Due to neighbor explosion, neighbor sampling
does not work well with deeper GNN models. Therefore, we propose an alternative first-stage
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sampling method to cover models that are not suitable for LBS, which also enables further
workload reductions. In the high level, the algorithm resembles partition-based sampling in
Hanoi but distinguishes itself with several key improvements. We denote the method as
PBS (Partition-Based Sampling) and elaborate the algorithm.

Neighbor losses due to edge cuts in graph partitioning are one of the main causes of
model accuracy loss (Section 4.3.1). Joestar addresses the issue by leveraging historical
embeddings [45] of halo nodes. Given a node set V , halo nodes are first-hop neighbors of V
while not included in V themselves. PBS in Joestar (Fig. 5.3) includes halo nodes of sampled
graph partitions in the macro-batch to recover from immediate edge cuts due to partitioning.
Moreover, PBS retrieves historical embeddings of halo nodes rather than their input node

Partition 2

Partition 3 Partition 3

halo nodes

Before Sampling After Sampling - Partition 3 selected

Partition 1

Figure 5.3: PBS in Joestar: sampled partitions are selected along with their halo nodes.

features. Historical embeddings refer to the most recent hidden layer activations computed
for each node in previous iterations of model training. As model parameters usually change
gradually, historical embeddings, though becoming stale with updated model parameters, are
still good approximation of accurate hidden activations. By gathering historical embeddings
of halo nodes, PBS no longer needs to compute their most up-to-date hidden activations. It
effectively stops first-stage samplers from sampling beyond halo nodes, which controls the
macro-batch subgraph sizes. PBS keeps a full historical embedding table in the host memory.
It is frequently updated by freshly generated hidden activations freshly in the forward passes
of GNN models.

The data volume of a macro-batch subgraph in PBS is primarily influenced by the sizes
of sampled partitions and the number of halo nodes. Since each halo node induces at least
one edge cut of the graph partition, the quality of graph partitioning routine is critical
in determining the sizes of macro-batches. Prior works [50, 108] choose min-cut graph
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partitioners for this reason. Similarly, we select GAP because of its scalability and capability
of maintaining diversity of nodes. Nonetheless, the inclusion of halo nodes still introduces
significant data traffic which can be much larger than nodes in the graph partitions. When
input features are highly-dimensional or the machine is equipped with legacy PCIe, bus
transfer will likely bottleneck the pipeline due to the limited bandwidth of peripheral buses
compared to CPU or GPU memory. Thus, more I/O reduction may be desired.

To handle this, Joestar proposes ahead-of-time sampling by partially performing steps of
second-stage sampling before feature gathering and bus transfer are initiated by the first-stage
sampling. The benefits of ahead-of-time sampling comes from the following observation: in
large-scale graph datasets, macro-batches constructed by PBS contain a substantial portion
of unused data. For those datasets, training nodes constitute only a small portion of all
nodes in the graph due to limited labeling (e.g., only 1% are training nodes in papers). It
is highly likely that the second-stage sampling starting from the small set of nodes will not
touch all nodes in a single epoch. Without ahead-of-time sampling, PBS always includes
all inner nodes in the partition and halo nodes, even if many of them will not be utilized
by the following mini-batch sampling and model training. We demonstrate the mechanism
in Fig. 5.4. Ahead-of-time sampling is structure-only and thus lightweight. It does not involve
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Figure 5.4: Ahead-of-time sampling in Joestar decides the working set of the next macro-batch
iteration in advance. The macro batch data are then filtered before the bus transfer, reducing the
overall I/O traffic.

accesses to large volumes of feature data. The sampling results are used to filter out graph
topology input features and historical embeddings in the macro-batch to reduce the overall
I/O traffic. Notably, in our experiments ahead-of-time sampling is able to filter out 40% –
50% of data traffic when applied to large datasets papers and mag240m-c. We provide a
more comprehensive evaluation later in Section 5.4.3.
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5.2.3 Intra-Batch Parallel Sampling

GPU memory is a scarce resource in large-scale GNN training. For Joestar, it puts a tight
limit on the number of macro-batches that can be resident on the GPU memory. This leads to
a trade-off between macro-batch sizes and sampling parallelism available to CPUs. Increasing
macro-batch sizes usually reduces the overall work by CPUs because of graph data locality
and hence more overlap in sampled neighborhood structures (C(BL)/|BL| < C(B)/|B| when
|BL| > |B|). Meanwhile, excessively large macro-batches restrict inter-batch parallelism due
to GPU memory constraints, which significantly lowers sampling thoughputs on CPUs.

Joestar addresses the dilemma by proposing intra-batch parallel sampling for the
macro-batch stage. Intra-batch parallel sampling takes advantage of the parallelism between
nodes and edges within a batch and employ multiple CPU threads to sample a macro-batch
collaboratively. Prior works [30, 31, 90] do not favor this type of parallelism because it has
suboptimal multi-threaded throughput scaling. However, it is not an issue for Joestar,
because minimizing macro-batch sampling latencies is prioritized over maximizing sampling
throughputs. For each macro-batch, we would like to shorten the CPU stage so that it will
be entirely overlapped by bus transfer or GPU stages. Increasing macro-batch sampling
throughputs at the cost of worsening latencies on the other hand would stall the GPU, as the
mini-batch sampling stage on GPU has to wait for incoming macro-batch data. Joestar

leverages parlaylib [109], a high-performance parallel programming library to implement
intra-batch parallelism efficiently.

5.3 Joint Optimization of Sampling and Computation

Joestar’s multistage sampling scheme enables offloading of second-stage sampling completely
to the GPU. By pipelining first-stage sampling on CPUs, bus transfer and on-GPU stages,
Joestar shifts the primary performance bottleneck from CPUs or bus transfers to GPU
execution. Consequently, efficient GPU sampling and GNN model computation are crucial to
the overall training performance, which is the focus of this section.

Unfortunately, existing works fail to provide comprehensive solutions to both aspects.
Despite substantial research efforts to improve GNN sampler performance and flexibility,
most of them treat GNN sampling as an isolated component independent of the rest of GNN
training [41, 74, 90, 103]. Similarly, while several studies target GNN kernel optimization [43,
53, 54, 103, 105] and achieve impressive speedups for certain kernels, the impact on end-to-
end performance of mini-batch GNN training remains moderate because they do not tackle
overheads from sampling or dense tensor operations. This compartmentalized perspective,
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while simplifying the problem space, risks overlooking the crucial optimization opportunities
at the intersection of sampling and model computation.

To avoid the limitation, Joestar adopts a holistic view of the GNN training pipeline,
leveraging synergies between sampling and compute. It opens the door to a novel optimization
space from the co-location of GNN sampling and computation, even for datasets that are much
larger than the GPU memory capacity. Specifically, Joestar proposes a compilation-drive
workflow to jointly optimize model computation and graph sampling by lowering operations
of these two stages into a unified intermediate representations of sparse and dense tensors. A
range of optimization opportunities arise to the surface from the abstraction and lowering,
for instance, elimination of redundant graph structural computation and novel operator
fusions between GNN layers and graph sampling. Joestar utilizes PyTorch 2’s advanced
compilation features [110], such as Dynamo for front-end tracing and Inductor for back-end
optimization, in the dynamic mini-batch GNN training workload for the first time. Aggressive
kernel fusion and grouping of kernel launching drastically reduce the orchestration overhead
that has been significant in mini-batch GNN training. Additionally, Joestar employs
profile-guided optimizations for better sparse tensor format selection and operator schedules,
which represents a methodological advancement beyond current ad-hoc approaches based on
heuristics and runtime checks. Fig. 5.5 summarizes the end-to-end workflow of Joestar

compilation process.

 1 def neighbor_sample(g, src, fanouts):
 2   for fanout in fanouts:
 3     slice = g[src,:]
 4     sample = slice.sample(fanout)
 5     ...

 1 class GraphSAGE(nn.Module):
 2   def forward(self, x, g):
 3      for linear in self.linears:
 4         x = g.pull(x, 'mean')
 5         x = self.linear(x)
 6         ...

Sampler
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Figure 5.5: Compilation workflow of Joestar.

5.3.1 Unified Interfaces of Graph Operations in GNNs

Joestar provides multi-level representations to express diverse graph operations of mini-batch
GNN training, At the higher level, graphs are treated as a fundamental datatype for which we
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introduce common graph query, structural transformation and tensor computation APIs. At
the lower level, graphs are described in general sparse tensor formats, i.e., compressed sparse
row (CSR), compressed sparse column (CSC), and coordinate list (COO). Correspondingly,
the associated graph APIs get translated into compositions of sparse and dense tensor
operations, each of which is backed up by actual GPU kernels.

Graph-Level Representation

The graph datatype follows the definition briefly discussed in Section 2.1: a graph structure is
given by G = (V , E), where V refers to the node set of G while E a subset of V ×V , represents
the sparse connections between nodes. Each node v ∈ V or edge e ∈ E can be attached
with one or more attributes, either scalar or multi-dimensional. Attribute data are stored
in conventional dense tensors. Nodes and edges are assigned integer IDs which are used to
index attribute tensors to retrieve individual data. Following the abstraction of DGL graphs,
the node and edge attributes are stored in two containers, ndata and edata, respectively and
indexed by attribute names. G can be bipartite as well. Nodes of a bipartite graph consist of
two disjoint sets, Vs and Vd, where Vs is the source set and Vd is the destination set. Similarly,
the node IDs are split into two disjoint domains.

We summarize the key graph operations provided by Joestar into three groups (Table 5.2):
property queries, structural transformations, tensor computation. For tensor computation
over graphs we adopt message passing-style interfaces popularized by DGL [30] for node and
edge-centric computation. The first category, property queries, provides basic information
about the graph that is useful in subsequent computations. IDs of nodes and edges, for
instance, are often needed in sampling and feature gathering operations. The second category,
structural transformations, includes operations that transform the graph structure, such
as subgraph extraction, augmentation or truncation of graph structures and graph sampling.
They produce new graphs from existing ones to be used in the following transformations or
GNN model computations. The last category is a core set of graph computation operations.
These operations follow the same semantics as their namesakes in DGL [30], which enables
flexible customization through user-defined functions but also efficient specialization for
commonly used ones such as copying messages from source attributes and sum aggregation.
One main complaint about the DGL graph interface is the cumbersome syntax when applied
to graph sampling [41]. Joestar addresses this issue by clearly specifying the default
behavior of each operation.

Graph-level interfaces are designed to be an expressive abstraction for developers to
implement custom graph samplers and models. Behind the scenes, Joestar lowers the
abstraction to a set of tensor-level interfaces that are more efficient to implement and optimize.
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Table 5.2: Three groups of graph-level operations provided by Joestar, using G,G1, G2 to denote
graphs.

Group Operation Description
Property
Queries

num_nodes, num_edges, etc. The number of nodes and edges of
G.

nodes, srcs, dsts, edges ID tensors of nodes and edges of
G.

Structural
Transforma-

tions

G[srcs,:], G[:,dsts] Subgraph extraction from G by
source and destination node IDs.

G1 op G2 (op:+, -) Union and difference of two graphs
G1 and G2.

G.reverse Reverse edge directions of G.
G.individual_sample(K, probs)
G.collective_sample(K, probs)

Sample individually and collec-
tively from G and extract the sam-
pled subgraphs.

Graph
Computation

G.apply_nodes(fn) Apply a node-wise function to G.
fn has access to node attributes.

G.apply_edges(fn) Apply an edge-wise function to G.
fn has access to source, destina-
tion and edge attributes.

G.push(msg_fn, agg_fn) Push messages from source nodes
to destination nodes. msg_fn com-
putes messages and agg_fn ag-
gregates messages at destination
nodes.

G.pull(msg_fn, agg_fn) Similar to push but works in the
reverse direction. Pull messages
from destination nodes to source
nodes.

Tensor-Level Interfaces

At the tensor level, the graph datatype is represented as a set of sparse and dense tensors: a
sparse tensor A for the graph structure and a collection of dense tensors {DV }, {DE} for
node and edge attributes. Nonzero elements of A are the edge weights and defaults to 1 if not
specified. Currently we do not assume specific patterns of graph topology. Thus, Joestar

employs three general sparse tensor formats, CSR, CSC and COO, to represent the graph
structure. The dense tensors storing node and edge attributes remain in the same formats as
underlying tensor frameworks. With the lowering of graph datatype to tensors, we define
translations from graph-level operations to tensor-level operations in Table 5.3.
Property Queries. Tensor operations are almost identical to their graph-level counterparts,
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Table 5.3: Mapping of graph-level operations to tensor-level operations.

Group Graph Ops Lowered Tensor Ops

Property Queries num_nodes, num_edges, etc. num_rows, num_cols, num_nnz
nodes, srcs, dsts, edges rows, cols, nnz

Structural
Transformations

G[srcs,:], G[:,dsts] A[rows,:], A[:,cols]
G1 op G2 (op:+, -) A1 + A2, A1 − A2

G.reverse() AT

G.individual_sample(K,
probs)

A.rowwise_sample(K,
probs).compact()

G.collective_sample(K,
probs)

A[A.row().sample(K,
probs),:].compact()

Graph
Computation

G.apply_nodes(fn) Dense tensor operations on DV

G.apply_edges(fn) Dense tensor operations on DE or
SDDMM

G.push(msg_fn, agg_fn) SpMM
G.pull(msg_fn, agg_fn) SpMM

using row IDs as source nodes and column IDs as destination nodes.
Structural Transformations. The subgraph extraction operation is mapped to a sparse
tensor slicing operation, which extracts the rows and columns of A according to the source
and destination node IDs. Union and difference operations are translated straightforwardly
to sparse tensor addition and subtraction. Graph reversal is implemented as a sparse tensor
transpose. To support graph sampling, Joestar defines sparse tensor compaction, which
removes all-zero rows and columns and remap their IDs to a contiguous range. Hence,
individual graph sampling is mapped to a row slicing and row-wise sparse tensor sampling
then followed by compaction, while collective sampling is essentially a composition of random
number sampling, sparse tensor slicing and compaction. We illustrate the process of individual
graph sampling in Fig. 5.6.
Graph Computation. Graph computation is where most of the differences between graph-
level and tensor-level operations become evident. The former takes a node- or edge-centric
view, while the latter applies the operation on the entire tensors. For apply_nodes(fn), the
node-wise function is applied to dense node attribute tensors. It is mapped to corresponding
element-wise or row-wise dense tensor operations. For apply_edges(fn), when the user-
defined function only accesses edge attributes, it is translated similarly to dense tensor
operations. If fn involves source and destination node attributes, it is lowered to a sampled
dense-dense matrix multiplication (SDDMM) with specicializations. push(msg_fn, agg_fn)

and pull(msg_fn, agg_fn) represent two variants of message passing, one along the edge
direction and the other in the reverse direction. They are naturally implemented as SpMM
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Figure 5.6: Graph sampling in three steps. In GNNs, graph sampling is also associated with feature
gathering after compaction.

with specializations. In almost all cases, GNN models do not propagate gradients through
the graph structure, so the sparse tensor A is not differentiable. The backward passes of
the graph computation operations are thus well defined following common practices in GNN
frameworks [30, 31].

Currently, the lowering from graph to tensor operation is carried out manually and then
encapsulated as libraries under graph-level APIs. After the lowering, we are able to unify
the description of graph sampling and GNN model computations in a single computation
dataflow graph (DFG), where each node is a recognized sparse or dense tensor operation and
edges are data dependencies between them. Compared with prior solutions [39–41], Joestar

provides a more comprehensive view of the entire GNN training pipeline, which leads to the
optimization opportunities articulated in the following sections.

5.3.2 Compilation Optimizations

Given the unified representation of graph sampling and model computation in a DFG,
Joestar is able to apply a range of joint compilation optimizations to improve the end-
to-end performance. In particular, Joestar leverages novel cross-stage operator fusion,
which fuses part of graph sampling with GNN model computation to eliminate redundant
graph structural computation and data movements. To alleviate the kernel launch overhead,
Joestar also introduces a kernel invocation grouping optimization through shape padding
and CudaGraphs.
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Figure 5.7: Sample-Gather-Aggregation fusion: aggregation implicitly performs a gather operation,
making explicit feature gathering unnecessary.

Cross-Stage Operator Fusion

Operator fusion is a well-known optimization technique in deep learning compilers [110–112].
It works by merging multiple operations into a single kernel to reduce the overhead of kernel
launching and data movement. For GNN training, most existing works focus on fusing
operations within the same stage, i.e., GNN model computation [40, 53, 103, 105] or graph
sampling [41], due to an isolated view of the two stages. In Joestar, with a unified DFG
representation, we are able to perform novel cross-stage operator fusions neglected by prior
works. Joestar proposes three types of fusions illustrated: Sample-Gather-Aggregation,
Gather-Update and Sample-Structural fusion.

In mini-batch GNN training, a typical workflow involves sampling subgraphs, compacting
their node IDs, and gathering input features from the original feature tensors. Compaction
ensures that the subsequent graph computation can correctly index the gathered features.
These steps are followed by the first GNN layer, which either aggregates the input fea-
tures over the sampled subgraph (e.g., G.pull) or updates node features individually (e.g.,
G.apply_nodes). The Sample-Gather-Aggregation fusion (Fig. 5.7) is motivated by the
observation that the aggregation step implicitly performs a gather operation on the input
features, making the intermediate feature gathering redundant. Further, when the subgraph
taken by the first GNN layer will not be reused later, we skip the compaction step as well.
While this fusion only applies to the first GNN layer, its computation and data movement
savings can be significant for node-wise sampling methods, since they recursively expand the
sampled subgraphs, making the first layer the most expensive one.

Sample-Gather-Aggregation fusion is feasible only when feature aggregation is the initial
operation in the target GNN model. In cases where node feature updates directly follow the
sample-gather sequence, Joestar enables partial fusion of the sampling and computation
stages through Gather-Update fusion, provided the update function operates in a node-wise
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manner. A common scenario is when the GNN model applies a linear transformation to the
gathered input features. To support this, Joestar offers specialized fused kernels, including
Gather-Elementwise and Gather-GEMM, to streamline such operations.

Another frequent pattern in GNN training, the interleaving of graph computation and
structural transformations, also lends itself well to cross-stage operator fusion. As an example,
adding self-loops to sampled subgraphs is a common practice to mitigate numerical issues,
such as division by zero. When performed during model computation, it introduces data
dependencies that can stall subsequent GNN layers. Joestar addresses this by scheduling
structural transformations early and fusing them with sampling whenever possible. We
provide a fused sampling-and-adding-self-loops kernel to eliminate structural operations in
model computation time (Fig. 5.8). Other scenarios that can benefit from Sample-Structural
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Figure 5.8: An example of Sample-Structural fusion: fusing sampling and add-self-loop kernels.

fusion include node degree calculation and graph reversal.
Lastly, Joestar also adopts well-known intra-stage operator fusion optimizations, such

as element-wise dense tensor operator fusion, Extract-Select and Edge-Map fusion in graph
sampling [41], etc.

Kernel Invocation Grouping

GNN training on GPUs is characterized by a large number of short-lived kernels, which
leads to CPU boundedness and low GPU activity ratios (Section 5.1). A viable approach
to this challenge is to consolidate multiple kernel invocations into a single kernel launch,
thereby reducing the overhead. CUDA’s CUDA Graphs [113] offer an effective mechanism
to achieve this goal. However, CudaGraphs require static tensor shapes at runtime, which
complicates their use in GNN training due to dynamic graph structures and sampling. Existing
approaches, therefore, are restricted to full-batch training with static graphs. Joestar enables
CudaGraphs in highly dynamic mini-batch GNN training through an interesting observation
of sampling: although mini-batch graph structures keep changing, their shapes are often
similar across iterations due to statistical properties of random sampling. We illustrate the
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Figure 5.9: Sizes of subgraphs at different hops (d = 0, 1, 2, 3) generated by neighbor sampling.

observation in Fig. 5.9. It shows the sizes of sampled subgraphs produced by Joestar in
terms of the number of sampled nodes and edges for a real-world graph dataset (papers)
and throughout hundreds of training iterations. Per-hop node and edge statistics stay within
a narrow range, with occasional drops due to smaller sizes of last mini-batches in each
macro-batch step. Thus, it is feasible to pad sampled subgraphs up to pre-determined fixed
sizes without excessive space or computation waste. It enables the usage of CudaGraphs to
group all kernel invocations within a training iteration. We careful choose the values filled in
the padded regions in CSR/CSC formats so that they do not introduce any extra computation
for SpMM and SDDMM kernels. When training starts, Joestar dedicates the first epoch as
the warm up phase to collect the upper bounds of the sampled subgraph sizes. Padding and
CudaGraphs are enabled in following epochs to accelerate GPU computation. We also provide
a fallback mechanism to disable CudaGraph execution when the actual sizes of sampled
subgraphs exceed the pre-determined padded sizes. The optimizations significantly reduce
kernel invocation overhead, decreasing the total number of kernel launches by 60%–70% for a
three-layer GraphSAGE model compared to DGL and PyTorch Geometric. Notably, both
the forward and backward passes of the model require only a single kernel launch each, with
most remaining kernels dedicated to inherently data-dependent graph sampling.

5.3.3 Profile-guided Optimizations

On top of static compilation optimizations, Joestar also utilizes profile-guided optimizations
to further improve GNN training performance. We opt for profiling-based methods instead of
analytical cost modeling for two reasons. First, due to the diversity of GNN workloads, it is
difficult to develop a one-size-fits-all cost model that accurately predicts the performance
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with different input characteristics, especially in the presence of sparsity and dynamic tensor
sizes. Second, the performance of GPU kernels is highly sensitive to the underlying hardware
architecture, which makes analytical models hard to generalize. With runtime profiling, we
can capture realistic performance and easily adapt to the specific hardware and workload.
Profiling is piggybacked on the warm-up phase of GNN training, which we already have in
place for collecting the statistics of data shapes.

Joestar focuses on two key areas for profile-guided optimizations: sparse tensor format
selection and the scheduling of sparse-dense matrix multiplications. For the former, Joestar

extends beyond existing approaches by considering the end-to-end GNN training pipeline
and the impact of sparse tensor formats on both graph sampling and model computation.
Notably, it introduces a novel optimization space where sparse tensors can remain in their
original CSC or CSR formats without requiring mandatory format conversions. Previous
approaches often necessitate such conversions, as the backward pass of SpMM typically
expects transposed sparse tensors. By enabling SpMM kernels to accept any of the CSR,
CSC or COO formats, Joestar eliminates this constraint. To determine the optimal format,
Joestar employs a brute-force search strategy, evaluating all possible combinations and
selecting the best-performing configuration. Only a limited subset of sparse tensor operators,
such as SpMM, sparse tensor slicing, and sampling, are significantly influenced by format
choices. The performance of most other operators remains largely format-agnostic. This
constraint substantially reduces the complexity of the optimization space, making exhaustive
profiling both feasible and practical.

The alternation of sparse and dense matrix multiplications in GNN models lead to another
optimization opportunity. Mathematically, assuming the input feature matrix is X, the
stacking of a message passing layer and another linear layer is then expressed as Y = AXW ,
where Y denotes output features, A is the sparse adjacency matrix from the graph and W is
the linear weight matrix. The associativity of matrix multiplication permits two different
execution schedules, i.e., Y = (AX)W or Y = A(XW ), as demonstrated at the graph level
in Fig. 5.10. The two schedules vary in computation costs and are highly dependent on
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Figure 5.10: It is free to exchange orders of SpMM and GEMM operators in the DFG of GNNs.

the sparsity of A, the input dimension of X and hidden dimension of W . Prior works have
proposed heuristics to select the best schedule prior to the execution [60]. In Joestar, we
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take a more systematic approach by evaluating the costs of two schedules on the end-to-end
GNN training pipeline. Remarkably, when SpMM takes precedence over GEMM in the first
GNN layer, we observe that the backward pass of this SpMM can be entirely dropped in a
dead code elimination (DCE) pass since it is parameter-free. Prior approaches that purely
focus on the relative costs of each individual kernel overlook this optimization opportunity.
In most GNN models, the sequences of sparse and dense matrix multiplications are usually
isolated to each other and do not have nested structures (e.g., A1A2XW2W1). Thus, Joestar

handles the optimization of each sequence individually: it identifies all occurrences of such
consecutive matrix multiplications in the DFG, considers the correlation of schedule decisions
between forward and backward passes and selects the best schedule for each one.

5.3.4 Implementation Details

We implement Joestar as a GNN library built on PyTorch, leveraging the advanced
compilation capabilities introduced in PyTorch 2.0+ [110]. Using TorchDynamo as the
compiler frontend, Joestar traces Python programs written with graph-level operators
into tensor-level dataflow graphs (DFGs) represented as torch.fx graphs. These DFGs are
then optimized by merging the sampling and model computation stages, applying the joint
optimizations outlined in previous sections, and producing a streamlined, unified DFG. The
optimized DFG is then processed by PyTorch’s backend optimization passes and encapsulated
as a Python function.

Joestar heavily relies on PyTorch’s GPU caching allocator to reduce frequent host-device
synchronizations from explicit memory allocations. To address memory fragmentation and
prevent out-of-memory errors, Joestar fine-tunes the allocation granularity and split sizes
of the caching allocator. Additionally, it includes a suite of efficient CUDA kernels for various
sparse tensor operations listed in Table 5.3 and fused operators in Section 5.3.2, ensuring
robust performance across diverse workloads.

5.4 Evaluation

Our evaluation compares the end-to-end training performance of Joestar with existing
systems on real-world, large-scale GNN datasets. To identify the source of speedups, we
analyze the effects of two key design choices in Joestar: multistage sampling and joint
optimizations of sampling and model compute. We also evaluate the model quality of
Joestar to ensure that the performance improvements do not come at the cost of accuracy.
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5.4.1 Evaluation Setup

GNN Models and Datasets

Table 5.4: GNN datasets used in the evaluation.

Dataset # Nodes # Edges Feature Train Ratio Size
products 2.5M 123.7M 100 0.08 2.8GB
papers 111M 3.2B 128 0.01 103GB
mag240m-c 122M 2.6B 768 0.01 214GB

We choose three representative GNN model architectures for our evaluation: Graph-
SAGE [9], GAT [10] and GCN [8]. GraphSAGE and GCN follow a similar graph convolutional
architecture with a slight difference in aggregation functions. GAT uses a self-attention
mechanism in message-passing layers and is more computationally expensive than Graph-
SAGE and GCN. The experiments are conducted on three large-scale datasets from the Open
Graph Benchmark (OGB) [33, 83] in Table 5.4: products, papers and mag240m-c. These
graphs are preprocessed into undirected formats by adding reverse edges, which is critical in
achieving reasonable model quality. mag240m-c is a homogeneous citation subgraph extracted
from the full heterogeneous mag240m dataset. We leave supporting heterogeneous graphs for
future work. Neighbor sampling (NS) is the only sampling method that proves to work well
for the scales of datasets we evaluate [64]. Moreover, many baseline systems only support
neighbor sampling [37, 64, 75, 90, 108]. Thus, we exclusively employ NS for baselines and
also in the first-stage sampling of LBS in Joestar. The model hyper-parameters follow
the example settings from the OGB repository and stay the same for all three architectures,
as shown in Table 5.5. Note that we use a universal batch size of 1000 for all experiments
following previous works [67, 75, 90] for fair comparison, since larger batch sizes are easier to
parallelize but can lead to slower model convergence [71].

Table 5.5: Model hyper-parameters used in the evaluation.

Dataset Num. Layers Hidden Dim. Fanout Batch Size
products 3 128 (15, 10, 5) 1000
papers 3 128 (15, 10, 5) 1000
mag240m-c 2 1024 (25, 15) 1000

Testbed Environment and Baselines

We conduct our experiments on two machines. The first machine, RTX, is a local workstation
equipped with a 12-core (2-way hyper-threaded) Intel CPU and a NVIDIA RTX 4090 GPU
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(24GB) memory connected with PCIe 3.0 x16. The second machine, A10G, is a cloud server
with a 15-core (2-way hyper-threaded) Intel CPU and a NVIDIA A10G GPU (24GB) memory
connected with PCIe 4.0 x16. The GPU power of RTX is higher than A10G, providing 1.68x
higher memory bandwidth and 2.36x more compute throughputs in FP32 but bounded by
half the PCIe bus bandwidth compared to A10G. They are on the two ends of hardware
configurations in the ratio of GPU power to PCIe bus bandwidth and thus representative for
a spectrum of machine learning systems.

For baseline comparisons, we primarily use DGL [30], a widely adopted framework with
robust support for on-GPU GNN training. Additionally, we include SALIENT [90], a
state-of-the-art GNN training system that incorporates advanced sampling and pipelining
optimizations. The performance results for SALIENT are drawn directly from its original
publication. Further details regarding the experimental setup and machine configurations are
provided in Section 5.4.2. It is worth noting that we exclude certain recent systems, such as
FastGL [103] and GNNLab [98], from our comparisons due to their unusual data preparation
practices. Specifically, these systems do not preprocess graph data into undirected formats,
which leads to a substantial degradation in model accuracy.

Reporting Metrics

We report the end-to-end training time per epoch, which includes the time taken for data
preparation on both the CPU and GPU and model computation during training. The reported
time is averaged over 5 epochs after the first epoch to account for the warm-up time due to
just-in-time model compilation, profiling passes, memory allocation, etc. Additionally, we
evaluate the model’s quality upon convergence. In line with standard practices, we report
the test accuracy corresponding to the epoch that achieves the highest validation accuracy.

Configurations for Joestar

We evaluate two variants of Joestar: Joestar-I and Joestar-II, which adopt LBS
and PBS as the first-stage sampling methods, respectively. Joestar employs a two-stage
sampling stragegy, thus requiring an additional set of hyper-parameters for the macro-batches
generated by the first-stage sampling. The parameter choices are listed in Table 5.6 for the
three datasets. For LBS, the macro-batch size refers to the ratio of training examples in the
first-stage sampling to the total number of training examples. The second-stage sampling
then takes a fixed number of examples (e.g., 1000) from the macro-batch. For PBS, similarly
to Hanoi, we choose the number of partitions (p) used in the preprocessing step and the
number of partitions (b) to to construct the macro-batches.
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Table 5.6: Additional training hyperparameters for Joestar.

Dataset Macro-Batch Size (PBS) Macro-Batch Size (b,p) (LBS)
products 1/8 (16, 128)
papers 1/12 (128, 1536)
mag240m-c 1/24 (64, 1536)

5.4.2 End-to-End Performance

The main results for our end-to-end training experiments are shown in Fig. 5.11 and Fig. 5.12.
For all runs, the datasets are stored primarily in the CPU memory. GNN sampling takes
place on the CPU for DGL and SALIENT, since they do not have multistage sampling.
DGL supports UVA sampling, which allows GPU to perform sampling on graph structures
and access the feature data stored in the CPU memory directly during feature gathering.
However, it requires a copy of graph structure data on the GPU and leads to out-of-memory
errors for papers and mag240m-c, so we disable it for DGL. For SALIENT, we take the
reported numbers run on two NVIDIA V100 GPUs to account for the hardware difference
between RTX 4090 and V100. The aggregated memory bandwidth of two V100 GPUs is 1.8x
higher than that of a single RTX 4090 (2×900GB/s versus 1008GB/s), while their combined
computation throughputs in FP32 is 34% of RTX 4090. GNN model computation is known
to be heavily memory-bound [103]. Thus, we view the comparison in favor of SALIENT. In
addition to the two configurations of Joestar described in Section 5.4.1, we also include a
variant of Joestar-I with model compilation disabled (Joestar-I: eager). The eager version
of Joestar-I runs the model in the same way as SALIENT and serves as a good reference
point for other variants of Joestar.
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Figure 5.11: End-to-end training performance of Joestar and baselines on the RTX machine.
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Fig. 5.11 reports the training time on RTX for products and papers (mag240m-c is too
large to fit into the host memory of RTX). Joestar-I with full-fledged optimizations achieves
8.0×, 3.6× and 8.2× speedups over DGL for GraphSAGE, GAT and GCN models on average.
Joestar-II further improves the performance, providing 13.1×, 4.8× and 14.3× speedups
over DGL. The significant performance is due to the combination of multistage sampling and
joint model optimizations. As we can observer, for less computationally expensive models
like GraphSAGE and GCN, the performance of Joestar-I: eager provides up to 5.3× faster
training time than DGL (GraphSAGE on papers). The performance gap between DGL and
Joestar is much less for GAT, since GAT is more GPU-bound and benefits less from the
reduction of bus transfer by multistage sampling.

Comparing to SALIENT, Joestar-I is on average 1.8× and 1.03× faster for GraphSAGE
and GAT, respectively. SALIENT does not support GCN, so we exclude it from the evaluation.
SALIENT reduces exposed CPU and bus overheads in GNN training with CPU sampling
optimized for throughputs and a sohpisticated pipelining strategy. Joestar also squeezes
these overheads to almost negligible levels albeit through a different approach of multisage
sampling. Consequently, the observed performance differences can primarily be attributed
to GPU execution efficiency between SALIENT and Joestar. For GPU-bound models
such as GAT, SALIENT achieves per-epoch training times that are 44%–59% of those of
Joestar-I: eager, which aligns closely with the GPU bandwidth disparity between the
RTX 4090 and two V100 GPUs. By incorporating joint optimizations, Joestar-I achieves
a 2.0× speedup over its eager variant, resulting in performance comparable to SALIENT.
However, for lighter models like GraphSAGE, SALIENT struggles to fully overlap CPU and
bus overheads, allowing Joestar-I and Joestar-II to consistently outperform it. Notably,
Joestar-II reduces training time by 66% and 27% for GraphSAGE and GAT, respectively.

We run a similar set of experiments on the A10G machine, as shown in Fig. 5.12. A10G
is able to handle the largest mag240m-c dataset. Overall, the performance advantage of
Joestar is slightly less evident than that on RTX, since the baseline is less bottlenecked by
the more significant CPU and bus transfers while more bound by GPU execution. Joestar-I
yields 5.4×, 2.1× and 4.8× speedups over DGL for the three models on average. Joestar-II
is consistent in reducing the training time on top of Joestar-I, providing another 1.5×, 2.0×
and 1.6× improvements. When compared against SALIENT++ [75] with two A10G GPUs,
a distributed version of SALIENT, Joestar-I runs 1.3× and 1.08× faster for products

and papers using only one A10G when training GraphSAGE (the only model evaluated
in SALIENT++). Moreover, SALIENT++ reports 7.0s/epoch on mag240m-c with 4×
A10Gs, while Joestar-II with only 1× A10G is able to deliver a comparable throughput
of 7.8s/epoch.
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Figure 5.13: I/O traffic reduction of Joestar-I and Joestar-II.

5.4.3 Effects of Multistage Sampling

To understand the performance benefits of multistage sampling, we profile the I/O traffic
in Joestar-I and Joestar-II incurred by one epoch of training. The results are shown
in Fig. 5.13 for papers and mag240m-c. Single-step NS represents the practice of baseline
systems like DGL and SALIENT that do not offload GNN sampling to the GPU. Joestar-I
reduces the I/O traffic by 2.2× and 3.3× for the two datasets. It partially explains the
performance improvements of eager Joestar-I over DGL in Fig. 5.11 and Fig. 5.12, while
more efficient CPU sampling and stage pipelining contribute to the rest of the performance
gain. Joestar-II is effetive in further reducing the I/O traffic by 2.7× and 2.4× for the
two datasets. Reusing historical embeddings of halo nodes instead of recursively sampling
enables the sampling routine to terminate much earlier. PBS with AoT sampling significantly
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decreases working set sizes of the first-stage sampling compared to LBS.
We also measure the impacts of multistage sampling on the final model quality, since

an extra stage of sampling may introduce more noise and bias to the training process
(Section 3.3). Table 5.7 compares the model accuracy of Joestar-I and Joestar-II with
single-step sampling methods (DGL). The “target accuracy” row represents the results reported
by DGL, while we list the differences in final accuracy of Joestar beneath it. We observe
that Joestar-I produces excellent model quality across all datasets and models with less
than 0.15% accuracy drops. The minor accuracy gap, if statistically significant at all, is likely
due to the loss of randomness from multistage sampling: the second-stage sampling reuses the
same subset of neighbors sampled in the first stage before the macro-batch is refreshed. For
Joestar-II, due to another level of approximation from historical embeddings, the accuracy
degration is slightly larger but still under 0.6%. Given a limited training budget, the higher
throughput of Joestar-II allows more training experiments with different hyper-parameters
to be conducted, which can potentially help to find a better model and compensate the
impacts on accuracy.

Table 5.7: Impacts of multistage sampling methods in Joestar-I and Joestar-II are minor compared
to single-step neighbor sampling method.

Methods products papers mag240m-c
GraphSAGE GAT GraphSAGE GAT GraphSAGE GAT

Target Accuracy 78.9 79.5 64.9 64.6 65.9 65.7
Joestar-I -0.1 +0.21 -0.13 +0.04 -0.08 -0.03
Joestar-II +0.21 -0.42 -0.25 -0.56 -0.29 -0.48

5.4.4 Effects of Joint Optimizations

This section provides a detailed ablation study of various optimizations implemented in
Joestar’s compilation and profiling passes. Starting from the eager version of Joestar,
we incrementally enable optimizations such as operator fusion with PyTorch-2 compilation
(Joestar: compile), kernel invocation grouping (Joestar: grouping) and profile-guided
optimizations (Joestar: all). The eager Joestar is equipped with optimized kernels
for graph structrual transformations, thus already achieving speedups over vanilla DGL.
We run different variants of Joestar with GraphSAGE and GAT, and demonstrate the
effects of optimizations in Fig. 5.14. The improvements contributed by each optimization
components direclty depend on the model architecture while less sensitive to the dataset
of choice. When GNN models are relatively light in computation, such as GraphSAGE,
all three optimization techniques contribute to final performance gains together. Model
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Figure 5.14: Effects of joint optimizations in Joestar on the end-to-end training time.

compilation provides the most sensible speedup by optimizing away the feature gathering
and fusing some dense tensor operations while CudaGraphs reduces 15%–20% of the overall
overhead due to kernel invocations. The benefit of kernel invocation grouping is much less
significant for GAT, which is more GPU-bound by longer-running kernels. Instead, the
model compilation and profile-guided optimizations have more pronounced impacts on its
performance. The former removes graph structural operations (e.g., adding self-loops and
graph reversal) from model computation, enabling more aggressive fusion of intensive kernel
operations. During profile-guided optimizations, Joestar discover the default behavior
of updating features before aggregation in GAT layers to be computationally sub-optimal.
It delays the matrix multiplication in feature updates to a later stage after the attention
mechanism and feature aggregation, which saves substantial amounts of computation due
to the shrinking structures of subgraphs sampled by neighbor sampling. This optimization
relies on data statistics specific to the sampling algorithms, which is inherently difficult to
capture with purely compilation-based approaches.

Fig. 5.15 performs a detailed runtime breakdown of sampling, feature gathering and
model computation time for one training iteration of GraphSAGE. This experiment uses
products for its relatively small size, allowing us to fit the entire dataset in the GPU memory.
Therefore, we are able to run DGL entirely on the GPU to demonstrate its performance
bottlenecks and compare it with variants of Joestar. Simply by substituting graph structural
operations and message passing layers in DGL with Joestar’s customized implementations,
we achieve a substantial reduction in both sampling and model computation time. Operator
fusion and kernel invocation grouping further remove feature gathering overheads and bring
a 2.2× speedup in model computation. Lastly, our profile-guided optimizations capitalize
on remaining opportunities for operator reordering and tensor format choices, though the
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performance enhancement in this particular scenario is more modest.
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Figure 5.15: Breakdown of end-to-end training time for different optimization components in
Joestar.

5.5 Conclusion

In this chapter, we presented Joestar, a GPU-centric framework designed for training GNNs
on large-scale graphs exceeding the GPU memory capacity. Joestar employs multistage
sampling to minimize PCIe data transfers while harnessing GPU hardware for sampling oper-
ations. A key innovation of Joestar is the co-location of sampling and model computation
on the GPU, enabling novel optimization techniques that holistically address graph sampling,
feature gathering, and model computation. Through comprehensive system- and kernel-level
optimizations, Joestar establishes a new performance standard for GNN training on a single
GPU, processing billion-edge graph datasets in under 10 seconds per epoch with negligible
impact on model accuracy (less than 0.5%).

86



Chapter 6

Conclusion and Future Work

Scaling GNN training to large-scale, real-world datasets remains a fundamental challenge
limiting their broader adoption and application. Achieving this scalability with both cost-
effectiveness and computational efficiency would democratize access for academic researchers
with constrained resources while simultaneously offering industry practitioners better training
throughput per computational dollar invested. Current GNN training systems typically
operate under the strict requirement of maintaining the entire dataset in either CPU or
GPU memory to ensure acceptable performance. Extending GNN training to larger and
more economical memory tiers presents significant challenges due to the inherently irregular
data access patterns associated with graph sampling and the bandwidth limitations of lower
memory hierarchies.

This thesis presents a novel approach to addressing this challenge through the introduction
of multistage sampling. Multistage sampling encourages I/O traffic reduction and enhances
data reuse by decomposing fine-grained sampling operations into multiple stages with adaptive
degrees of granularity. Based on this methodological framework, this thesis investigates two
complementary systems, Hanoi and Joestar, engineered to address the constraints of
limited host memory and GPU memory, respectively.

1. Hanoi (Chapter 4) explores the design space of out-of-core GNN training through a
comprehensive algorithm-system co-design approach. Prior solutions either compromise
model quality for efficiency or depend heavily on host memory caching for acceptable
performance. Hanoi establishes an improved design frontier by striking a better balance
between computational throughputs and model accuracy through its accuracy-aware
multistage sampling design. It delivers training throughput and accuracy comparable to
in-memory systems while utilizing only a fraction of the host memory, enabling single-
node training to scale to datasets substantially larger than those currently explored.
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2. Joestar (Chapter 5) streamlines single-node in-memory GNN training by eliminating
CPUs from the system critical path and optimizing GPU hardware utilization. By lever-
aging multistage sampling principles, it offloads the majority of sampling operations to
the GPU, which excels at high-throughput fine-grained sampling. Through compilation
and profiling-based techniques, Joestar jointly optimizes GPU-based sampling and
model computation. This approach reveals optimization opportunities overlooked in
existing systems, including cross-stage operator fusion and profiling-guided end-to-end
training optimization. Joestar achieves state-of-the-art performance on billion-scale
datasets with a single GPU.

Looking ahead, we envision several promising avenues for future research. First, the
methodologies taken by the proposed systems differ from the existing line of GNN training
works, which mostly focus on various forms of caching and kernel-level optimizations. We
believe the techniques proposed in the thesis are largely orthogonal to those works and can
be combined with them to further improve the performance. Particularly, the integration of
caching and multistage sampling can be a promising direction in out-of-core GNN training,
where the storage I/O remains one of the major bottlenecks. It would also be interesting to
explore automatic operator fusion of the diverse sparse tensor operators in GNN training.
Currently, most of the fused kernels are implemented manually, which hinders the extensibility
of the system and optimization space a compiler can explore. Second, the proposed systems
are mainly designed for single-node training. While the extension to distributed data parallel
training through data replication is straightforward, it remains an open question how to best
combine data partitioning and multistage sampling. Other parallelization strategies, such
as model parallelism and pipeline parallelism, are also promising directions for future work.
Finally, we believe the multistage sampling framework can be extended to other domains
beyond GNNs, such as non-graph based recommendation systems and even more general
machine learning workloads where data preparation represents a significant portion of the
training time. As machine learning models continue to grow in the demand of training data,
multistage sampling can be an effective approach in enabling more cost-effictive storage
hardware without sacrificing data ingestion performance and model accuracy.
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