
MPrompt: A Pretraining-Prompting Scheme for
Enhanced Fewshot Subgraph Classification

by

Muhua Xu

B.S. Computer Science and Engineering and Mathematics, MIT, 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Muhua Xu. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Muhua Xu
Department of Electrical Engineering and Computer Science
May 10, 2024

Certified by: Arvind
Professor in Electrical Engineering and Computer Science, Thesis Supervisor

Certified by: Jie Chen
Senior Research Scientist, Thesis Supervisor

Certified by: Xuhao Chen
Research Scientist, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

MPrompt: A Pretraining-Prompting Scheme for Enhanced
Fewshot Subgraph Classification

by

Muhua Xu

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Motivated by the significant progress in NLP prompt learning, there have been great
research interests recently in adopting the prompting mechanism for graph machine learn-
ing. Despite the prior success of prompting methods applied in node-level and graph-level
learning tasks, subgraph-level tasks are highly underexplored, and the potential of prompt-
ing remains unclear. This thesis fills this gap by exploring the prompting mechanism for
subgraph classification, which is a much more challenging task as it requires understanding
both global and local graph structures.

In this work, we build upon state-of-the-art self-supervised graph learning models to
develop a subgraph-specific prompting scheme Membership Prompt (MPrompt) based
on traditional graph neural networks (GNN). Our proposed prompting scheme relies on node
membership knowledge to help GNN distinguish between border and local connections,
which increases its expressive power while maintaining the prompt’s independence from any
specific dataset or model architecture. Additionally, we also present Subgraph Reconstructive
Pretraining (SRP) which can provide MPrompt with better structural embeddings during
pretraining.

Experiments are conducted on both synthetic and real-world datasets, including protein
function prediction and social network analysis. Our method demonstrated performance
improvement under few-shot experiment setting and maintained comparable performance in
full-shot settings while requiring less computation.

Thesis supervisor: Arvind
Title: Professor in Electrical Engineering and Computer Science

Thesis supervisor: Jie Chen
Title: Senior Research Scientist

Thesis supervisor: Xuhao Chen
Title: Research Scientist

3

4

Acknowledgments

I would like to express my deep gratitude to my advisor Professor Arvind and mentors, Dr.
Jie Chen and Dr. Xuhao Chen for their guidance throughout my research journey, and to
the entire research group — Locke Cai, Yitan Zhu, Michael Hadjiivanov, and Kiwhan Song
— for their hard work and insightful discussions that significantly advanced this research.

Additionally, I would like to thank my family and friends for providing a supportive
environment.

The success of this work would not have been possible without the combined efforts and
faith of all these amazing people.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13
1.1 Graph Neural Network . 14
1.2 Pre-training and Prompting . 16

2 Background and Related Work 18
2.1 Supervised Subgraph Classification Algorithms 18
2.2 Graph Pretraining Algorithms . 20
2.3 Graph Prompting Algorithms . 21

3 Proposed Work 23
3.1 MPrompt . 23

3.1.1 GNN architecture and Prompt . 24
3.1.2 Node Membership . 26
3.1.3 Alternative Prompting Methods . 27
3.1.4 Read Out . 29

3.2 Subgraph Reconstructive Pretraining (SRP) 30

4 Dataset And Experiment Setup 33
4.1 Datasets . 33
4.2 Objective Function and Evaluation . 35
4.3 Baseline Methods . 37
4.4 Computation Setup . 39

5 Results 40
5.1 MPrompt Results . 40

5.1.1 Synthetic Dataset . 41

7

5.1.2 Real World Dataset . 42
5.1.3 Ablation Study Results . 43

5.2 Subgraph Reconstructive Pretraining Results 47

6 Conclusion 51

A GLASS mixture implementation 53

References 54

8

List of Figures

3.1 Overview of the proposed MPrompt with pretrain phase on top and prompt
phase on the bottom. Blue indicate frozen weights while Red indicates activate
tunable weights. 24

3.2 Example of failure to distinguish subgraphs without Node Membership [8] . 27
3.3 Overview of the proposed Subgraph Reconstructive Pretraining with k = 3 . 32

4.1 Dataset class distribution . 35

5.1 Ablation study on impact of shot count on performance. All datasets use the
micro-F1 metric. 44

9

10

List of Tables

2.1 SubGNN Subgraph Properties . 19

4.1 Summary of dataset statistics . 34
4.2 Baseline Algorithms sorted into their respective categories 37

5.1 Comparison with other baseline strategies on synthetic datasets in a 10-shot
setting. All datasets use the micro-F1 metric and standard deviation calcu-
lated with 10 runs. 41

5.2 Comparison with other baseline strategies on real-world datasets in a 10-
shot setting. All datasets use the micro-F1 metric and standard deviation
calculated with 10 runs. 43

5.3 Ablation study on the effectiveness of node membership in a 10-shot setting.
All datasets use the micro-F1 metric and standard deviation calculated with
10 runs. 45

5.4 Ablation study on full shot performance for synthetic and real-world datasets.
All datasets use the micro-F1 metric and standard deviation calculated with
6 runs. 46

5.5 Ablation study on the effectiveness of Prompting in a 10-shot setting. All
datasets use the micro-F1 metric and standard deviation calculated with 10
runs. 47

5.6 Summary of results for different pretraining with AVE downstream algo-
rithm.All datasets use the micro-F1 metric and standard deviation calculated
with 10 runs. 48

5.7 Summary of results for different pretraining with GNN-based downstream
algorithm. All datasets use the micro-F1 metric and standard deviation cal-
culated with 10 runs. 50

11

12

Chapter 1

Introduction

In contrast to text or images, which may be arranged sequentially or into grids, graph-

structured data is represented in the form of node objects interconnected with edges. To

effectively extract information from this intricate data structure, modern approaches to

graph analysis typically rely on graph neural networks (GNNs) to create representations by

aggregating neighborhood node information for graph deep learning.

Among the different tasks to be solved in graph deep learning, subgraph classification

is one of the most challenging and understudied tasks among them. This is because the

algorithm needs to understand not only the structure of the subgraph but also its connection

to the background graph. Additional modifications are required to properly capture the

distinct topology of subgraphs, as opposed to graph-level activities, which lack finer local

structure, and node-level tasks, which might be detrimental to grasping an overarching view

of the graphs. Subgraph tasks are essential for many real-world applications, such as finance

and social networks, or scientific domains like biology and chemistry.

Recent advancements in GNNs have expanded their scope to address challenges associated

with large-scale graphs featuring limited training labels, including issues like overfitting, do-

main shift, and unstable performance. In particular, graph-related tasks in scientific domains

such as chemistry and biology require time-consuming and costly laboratory efforts for data

13

annotation. Moreover, the properties of training and testing graphs can vary considerably

due to the nature of these tasks, complicating the task of achieving accurate model general-

ization. With inspiration adopted from natural language processing (NLP), researchers have

shifted from the traditional supervised learning paradigm to a pre-training approach. This

methodology involves training a generalized model on a self-supervised task before adapting

it to a specific downstream task. Particularly in scenarios with a shortage of training labels,

the "pre-training and prompting" approach emerges as a promising solution.

This thesis propose a specialized prompting methods with node membership knowledge

dedicated to few-shot subgraph classification using GNN.

1.1 Graph Neural Network

Given that G = (V,E) is a graph, with adjacency matrix A and input feature matrix H0

where each row of H0 is the feature vector of a node. For convenience, we denote individual

feature vectors by using a lower-case letter, such as h0
v for node v.

GNNs are used to learn a final feature vector for each vertex. The key idea is to construct

a message passing framework, where each node obtains its representation by receiving and

aggregating messages from its neighboring nodes recursively.

For a k-layer message-passing neural network (MPNN) [1] with input features h0
v, the

resulting output feature vector would be hk
v for each vertex v. At each time step t, we update

the feature vector of each node as follows:

ht
v = UPDATE(ht−1

v ,AGGREGATE(ht−1
u |u ∈ N (v)))

where AGGREGATE is an aggregation function that combines all neighbors’ features into

a message feature (i.e., a weighted sum or mean function), and UPDATE controls how the

message is used to update the current node feature (i.e., a simple addition or concatenation

operation). A most basic aggregation step can be computed by a simple matrix multiplication

14

Hi+1 = AHiW involving the adjacency matrix A, feature matrix H, and a tunable weight

matrix W. The final output feature vector hk
v can then be passed through simple feed-forward

networks or multi-layer perceptrons (MLP) for downstream classification tasks. During

training, we use back-propagation to update the weight matrices used in our AGGREGATE

and UPDATE functions in each layer of the network, as well as the weights in our final MLP

layer.

In the case of different tasks, such as graph-level prediction, a READOUT function is

often adopted to aggregate all node feature information in the graph into a final representa-

tion.

hG = READOUT(ht
v|v ∈ V)

The simplest READOUT function can be summation or averaging. However, there are more

complex choices available that are structural or attention-based.

Let S ⊂ V be a subset of nodes. GS is the subgraph of G induced by node set S. The

specific task of subgraph classification of interest in this work can be formally defined as:

Given a background graph G and a collection of training subgraphs with labels, {(GSi
, yi) |

GSi
⊂ G, yi ∈ Label, i ∈ Train}, predict the labels of subgraphs from the test set

{GSj
| GSj

⊂ G, j ∈ Test}. Each subgraph may be disconnected, and different subgraphs

may overlap.

Based on the foundational concept of MPNN, many advancements have been made in

recent research. One example is the Graph Attention Network (GAT) [2], which utilizes

attention-based mechanisms to aggregate the features of neighboring nodes. Another ex-

ample is the Graph Isomorphism Network (GIN) [3], which employs MLP in its UPDATE

function because of its ability to represent the composition of functions. Other popular

architectures include Graph Convolutional Network (GCN) [4] and Graph Sage (GSAGE)

[5].

15

1.2 Pre-training and Prompting

To address these issues of label scarcity and domain transfer during downstream tasks, studies

in various fields of deep learning have adopted the "pre-training and fine-tuning" paradigm.

This approach involves initially pre-training the model using available unlabeled data and

then transferring the general knowledge acquired during pre-training to a new domain or

specific downstream task by fine-tuning the weights in the pre-trained model. In the setting

of graph learning, typically we pre-train a GNN on some self-supervised tasks related to

the overall graph structure, such as binary edge prediction. Afterward, we will tune only

the final MLP layer for the specific task. These pre-training tasks, however, often aim to

generate similar node features for connected nodes, even if they are unrelated to the goal of

our downstream task and can cause poor performance during fine-tuning.

A promising solution developed from NLP to address this mismatch between pre-training

and downstream goals is prompt tuning. Language prompts can either be a human-understandable

piece of text or a tunable vector. A simple example would be adding the prompt "Does [W1]

refer to [W2]? [MASK]" after the input text "Amy says she will major in Course 6." To

convert a coreference resolution task into the known mask word prediction task used during

pre-training. The final prompted input to the model would be:

Amy says she will major in Course 6. Does She refer to Amy? [MASK]

and the expected output would only be a single word token, Yes or No. Note that the prompt

can be static and human-designed, like the example, or it can be a simple continuous and

trainable vector that will be updated through back-propagation. While prompting is natural

in NLP, the idea is harder in graph learning, as we need to consider both how to represent

a prompt using nodes and edges and also how we can connect the prompt to our original

graph. Formally, prompting in subgraph classification can be expressed as:

16

Given a GNN model f(; θ) pre-trained on graph G for some pre-training objective and a

subgraph classification dataset S, we construct a new model f ∗(; θ, ϕ) based on f , parame-

terized by θ and prompt parameters ϕ. Then, prompt-tuning is done by optimizing for ϕ on

S via the standard cross-entropy loss.

17

Chapter 2

Background and Related Work

2.1 Supervised Subgraph Classification Algorithms

The state-of-the-art subgraph classification methods mostly rely on supervised graph learn-

ing techniques. In the pre-GNN era, subgraph structures were learned through embeddings

generated by language models using random walk samples within the subgraph [6]. How-

ever, these methods exclusively focus on the topology of subgraphs, neglecting both node

features and connections to the broader graph. With the emergence of GNNs for both

graph-level and node-level tasks, some simple methods for transferring to subgraph tasks

include applying a graph-level GNN to the subgraph or pooling node features. Yet, these

approaches either ignore border connections or lack detailed local structures. To address

these challenges, cutting-edge solutions involve implementing MPNNs on the entire graph,

with tailored adjustments made to the message aggregation at each layer.

SubGNN

Alsentzer et al. [7] were the first to formally propose the solution SubGNN, which not only

aggregates information from neighborhood nodes but also from other sampled anchor patches

in the entire graph to generate subgraph representations. The authors argued that subgraphs

contain non-trivial internal topology, notions of position, and external connectivity that are

18

Internal Border

Position Distance between Subgraph’s components
Distance between Subgraph and

rest of the Background Graph

Neighborhood Identity of Subgraph’s internal nodes Identity of Subgraph’s border nodes

Structure Internal connectivity of Subgrpah Border connectivity of Subgrpah

Table 2.1: SubGNN Subgraph Properties

essential for making classifications. Specifically, the paper identifies six essential properties

that are crucial for creating subgraph representations, as shown in Table 2.1, where border

nodes represent nodes within the k-hop neighborhood of any node in the subgraph. These

properties are also what we focus on while designing our prompting methods.

During the message passing phase, SubGNN samples anchor patches for each of the six

properties using a unique encoding and similarity function to compute the message. Messages

are concatenated and aggregated across layers to produce the final subgraph representation

that is used for classification.

Despite the success of SubGNN in over-performing traditional subgraph learning methods

and simple node pooling, proving that plain GNN is not capable of capturing essential

properties, the method bears a high overhead due to the need for pre-computing anchor

patches and passing additional messages.

GLASS

In recognition of the shortcomings of SubGNN and the ability of plain GNN to capture

topology and position through a simple BFS, a more simplified method of GNN with label-

ing tricks for Subgraph (GLASS) [8] is proposed as an improvement. GLASS argues that

the complex properties defined in 2.1 can be easily learned through a plain neighborhood

message passing by annotating whether the neighbor is within the subgraph or outside of it,

representing internal versus border nodes.

Based on its superior performance and high efficiency, GLASS will serve as the primary

supervised baseline method referenced in this thesis. Although much simpler than the orig-

19

inal SubGNN network, the additional MLP layers still provide a high level of reliability for

labeled training samples.

2.2 Graph Pretraining Algorithms

Pretraining algorithms, often referred to as self-supervised learning [9], offer an alternative

learning framework that diminishes reliance on manual annotations, thereby mitigating the

limitations of supervised learning. This pretraining process entails training the model on a

series of strategically designed tasks that automatically generate supervised labels directly

from the graph without requiring additional human annotation.

However, this arbitrary pretrain goal could cause disparities between pretraining and sub-

sequent tasks, which could undermine generalization and reduce pre-training’s efficacy [10].

Therefore, selecting an appropriate pretraining objective is critical for optimal performance.

This work focuses on pretraining techniques that primarily use topology’s structural in-

formation, since most subgraph datasets lack node or edge feature data. We specifically look

at contrastive learning methods, which train encoders to maximize the agreement between

positive pairs while minimizing the agreement between negative pairs sampled. [11]

The most straightforward example of contrastive learning is edge prediction [12], which

aims to predict whether a link exists between two nodes in the graph. Positive pairs are two

nodes connected by an edge, while negative pairs are nodes that are not connected. Negative

edges are randomly sampled from the graph, with 10% of the edges as validation sets during

training. This will prompt the graph to learn similar node features for connected nodes, thus

learning local information.

Another class of contrastive learning is to construct negative pairs by perturbing certain

aspects of the graph. Deep Graph Informax (DGI) [13] is the first self-supervised method

for maximizing the mutual information between local node features and global graph infor-

mation. The objective is to maximize the distance between positive sampled node features

20

and negative sampled corrupted node features compared to a summarized global graph rep-

resentation. Implementation-wise, negative nodes are corrupted by shuffling. Graph Con-

trastive Learning (GraphCL)[14] expands on the concept of DGI by incorporating different

augmentation strategies, such as node dropping, edge perturbation, attribute masking, and

sampled subgraphs, to generate different augmented views for contrastive learning. As a

result, GraphCL is able to minimize the distance between pairs of augmented graphs. Sim-

Grace[15] is also an adaptation based on DGI that adds random noise perturbation to the

model weights instead of the graph itself. This would prompt the pre-trained model to be

more generalizable and robust.

Edge prediction concentrates on local linkages, and the remaining methods capture global

insights, yet these existing pretraining techniques are generally devised for node-level or

graph-level tasks, learning exclusively local or global patterns but not both. Such a lim-

itation may pose challenges when adapting to subgraph prediction tasks that require an

understanding of both the local interconnectivity within the subgraph and the broader con-

text of the entire graph.

2.3 Graph Prompting Algorithms

The investigation into prompting algorithms gained attention following successes in various

domains, including computer vision and natural language processing (NLP). Early studies

delved into prompting methods in few-shot settings and examined their effectiveness in

transitioning between node-level and graph-level tasks. However, none of these efforts delved

into the complicated problem of subgraph classification.

GraphPrompt

GraphPrompt [16] stands out as one of the early pioneers embracing the pre-training

and prompting framework in graph prediction. The paper introduces an innovative pre-

training objective that utilizes k-hop neighbors as context for a node during edge prediction.

21

It presents two prompt types—element-wise multiplication and matrix linear transforma-

tion—both demonstrating improved performance, especially in few-shot scenarios. Addi-

tionally, the paper proposes the utilization of similarity measures between the final represen-

tation and a trainable virtual class prototype for label prediction, which closely resembles the

pre-training edge prediction task. While demonstrating the potential of prompting methods,

the work has limitations in terms of the tasks it supports and the pre-training schemes it

utilizes.

Graph Prompt Feature

Recent developments in graph-prompting endeavors aim for a universal solution by em-

ploying pre-training strategies and downstream tasks that can be applied across different

scenarios. Graph Prompt Feature (GPF) [17] emerges as one of the most effective prompt-

ing methods operating in the input feature space, with a theoretical guarantee of achieving

robust performance. Results indicate that prompting methods can significantly outperform

fine-tuning in both few-shot and full-shot scenarios. However, this generalized prompting

scheme may prove to be less effective in subgraph tasks because it treats all nodes equally.

22

Chapter 3

Proposed Work

In this work, we propose MPrompt, a novel graph prompting method for subgraph clas-

sification that makes use of node membership to discriminate between nodes inside and

outside the subgraph, and we also introduce Subgraph Reconstructive Pretraining (SRP), a

subgraph-specific pretraining scheme.

3.1 MPrompt

Our methodology introduces a two-step process, beginning with the pre-training of a Graph

Neural Network on the foundational edge prediction self-supervised task using only node

features and the underlying structure of the graph. Following this, we refine the model by

adjusting a specially designed prompt to guide the GNN’s focus. In this prompting stage,

we keep the original GNN weights frozen and train with actual subgraph labels. Figure 3.1

provides a visual summary of this process. Specifically, the node membership information is

injected through our prompt.

We will now formally introduce our proposed algorithm, detailing its constituent compo-

nents: Message Passing Neural Network (MPNN), Prompt, and Readout. Each component

will be defined theoretically to establish a clear understanding of its role within the architec-

ture. Additionally, we will also discuss the motivation behind the selection of this particular

23

Figure 3.1: Overview of the proposed MPrompt with pretrain phase on top and prompt
phase on the bottom. Blue indicate frozen weights while Red indicates activate tunable
weights.

structure and how it contributes to the task of subgraph classification.

3.1.1 GNN architecture and Prompt

We first formally define the plain GNN backbone of our algorithm on a graph G = (V,E) with

node features H. As introduced, common GNN are composed of MPNN : R|V |×d → R|V |×d

layers that operate on the node feature space where

ht
v = MPNN(ht−1

v ; θMPNN) = UPDATE(ht−1
v ,AGGREGATE(ht−1

u |u ∈ N (v)))

To increase the expressive power of our GNN, we further extend it to include two transfor-

mations fpost, fpre : Rd → Rd that could be any arbitrary functions (e.g., linear layer) that

work on individual node features. Thus, a message-passing layer g in our GNN would work

as

g(; θ) = fpost(; θpost) ◦ MPNN(; θMPNN) ◦ fpre(; θpre)

and the entire GNN model GNN : R|V |×d → R|V |×d with lll-layers would be

24

GNN(; θ) = gl(; θl) ◦ ... ◦ g2(; θ2) ◦ g1(; θ1)

which produces a final set of node features.

Now, with the background graph G, the l-layer GNN composed of our massage passing

layers g, we additionally define PROMPT(hv;ϕP) : Rd → Rd to be the base prompt function

with trainable parameters ϕP that we can apply to any node feature hv ∈ Rd for any vertex

v ∈ V . This PROMPT layer can also be added to both before and after each individual

massage passing layer, which gives us a prompted message passing layer g∗ : R|V |×d → R|V |×d

as

g∗(; θ;ϕ) = PROMPTpost(;ϕPpost) ◦ fpost(; θpost) ◦ MPNN(; θMPNN)

◦fpre(; θpre) ◦ PROMPTpre(;ϕPpre)

and a prompted GNN∗ to be

GNN∗(; θ) = g∗l (; θl, ϕl) ◦ ...g∗2(; θ2, ϕ2) ◦ g∗1(; θ1, ϕ1)

The exact function of PROMPT can take any form, but in this work, we primarily focus on

two types of PROMPT functions, MLP and Addition.

The MLP PROMPT takes the form of

PROMPT(hv;ϕ) = MLPk(hv;ϕ)

where MLPk is a k-layer Multilayer Perceptron (MLP), and the Addition PROMPT is

PROMPT(hv;ϕ) = hv + ϕ

which does element-wise addition.

We particularly chose to let the PROMPT function operate on node features, as it is the

25

most compatible with our backbone GNN architecture. This choice is further justified by

the fact that most subgraph classification datasets lack edge features, making node-focused

modifications more relevant. To evaluate the flexibility of our approach, we experimented

with both MLP and Addition PROMPT structures. These structures were chosen because

they offer varying degrees of freedom, which could potentially influence performance in few-

shot learning scenarios.

3.1.2 Node Membership

The main improvement made to increase the expressing power of PROMPT for subgraph

tasks is by introducing node membership, in which we define P(,m;ϕ):

P(hv,m;ϕ) =

PROMPT(hv;ϕ1) if mv = 1

PROMPT(hv;ϕ0) if mv = 0

where ϕ = ϕ1∪ϕ0 and m ∈ (Z2)
|V | is a labeling vector that denotes whether a vertex belongs

in a subgraph.

During training and inference, for a batch of subgraphs {GS1 , GS2 , ..., GSm}, m can be

computed as

mv =

1 if v ∈

⋃m
i=1 VSi

0 if v ̸∈
⋃m

i=1 VSi

for all v ∈ V.

The idea of node membership is inspired by the "zero-one labeling trick" first introduced in

GLASS [8], which claims that our GNNs are not enough to capture subgraph topology with

regard to the background graph as they only gather information about the rooted BFS tree

at each node.

As exemplified in Figure 2, given a graph G with uniform node features, the information

being passed through our massage passing layer would be identical for subgraphs S and S’, as

26

Figure 3.2: Example of failure to distinguish subgraphs without Node Membership [8]

they have the exact same BFS tree structure at each node. All nodes 1, 2, 3, 4, 6, and 8 have

four neighbors. However, these subgraphs are non-isomorphic and should be distinguishable.

This gap of information occurs because we lack information about the relationship between

the subgraph and the background graph. By simply knowing the membership of the node,

we can now generate different embeddings for S and S, as all nodes in S have two neighbors

inside and two outside, while in S, 3 and 8, there is one neighbor inside and three outside.

3.1.3 Alternative Prompting Methods

In addition to the primary MLP and Addition PROMPTs, we have investigated various

PROMPT variants tailored for few-shot subgraph classification.

Low-Rank Adaptation (Lora) PROMPT

A significant challenge in few-shot learning is the risk of overfitting; models often reach

100% accuracy on their small training sets without effectively learning the underlying pat-

terns. To address this, we adopted a strategy to reduce the number of trainable parameters

while preserving the model’s original expressive capabilities. Drawing inspiration from tech-

niques used in large language models, we implemented a Low-Rank Adaptation (LoRA)

27

approach [18]. This method employs rank decomposition matrices to approximate the MLP

prompts, specifically approximating the original weight matrix W ∈ Rd×k with

W = BA , B ∈ Rd×r, a ∈ Rr×k, r << min(d, k).

In practice, we often have r = d
4

and d = k since the MLP layer transforms the original

features without changing their dimensions. This would reduce the number of parameters

by half. Following the original paper, A is initialized by a random Gaussian initialization

and B is initialized to 0, which kept W = BA = 0 at the start.

Mixture of Expert (MOE) PROMPT

A well-known architecture that dramatically increases model capacity with little com-

puting overhead is the mixture-of-experts (MoE) architecture [19], which has recently shown

considerable success in deep learning. This model essentially replaces a single layer with a

routing mechanism that, during both training and inference, allocates distinct samples to dif-

ferent specialized layers (i.e., experts). Because of the expert layers’ non-linear capabilities,

empirical evidence [20] demonstrates that this strategy performs better than the single-layer

approach.

Formally, a k expert MOE layer replaces the normal function f : R|V |×d → R|V |×d with

a routing function r : R|V |×d → R|V |×kd and the expert functions e : R|V |×kd → R|V |×d,

therefore we have

f(hv) = r(hv) · e(hv)

where · symbolizes matrix multiplication. Since we allocate a probability to each expert

instead of selecting one, this method functions more like ensembling. The decision is made

to ensure that the model is not skewed toward selecting a single expert.

Virtual Node PROMPT

28

Beyond merely focusing on node feature space, we also want to capture the distinctive at-

tributes of graph datasets by integrating a PROMPT into the graph structure itself. Drawing

inspiration from a fundamental graph classification method, which represents variable-sized

graphs with a fixed-size vector through a virtual node summarizing the graph’s latent char-

acteristics [21], we introduce a PROMPT vector as an additional feature of a virtual node

linked to the subgraph. By "linking," we imply creating undirected edges that connect this

virtual node to every node within the subgraph, which fits the undirected nature of all sub-

graph datasets. This learnable feature vector is then propagated across the subgraph during

the message-passing phase of our GNN architecture while it aggregates all information about

a node’s neighbor.

There are several important considerations in the implementation of the Virtual Node

PROMPT. We want to maintain a consistent PROMPT across all subgraphs, so a single

virtual node feature vector would be connected to all subgraphs. This approach introduces

complexities during implementation, as it requires either expanding the dataset with multiple

virtual nodes sharing identical features or frequently connecting and disconnecting the virtual

node to and from the target subgraph. For simplicity in our code, we chose the latter

approach. This is facilitated by employing the Node Membership concept, where we add

an edge between the virtual node and all other nodes with mv = 1. However, a significant

issue arises from this method: it creates unwanted connections between nodes in different

subgraphs via the virtual node. To mitigate this, we limit our training to a batch size of 1,

ensuring isolation between subgraphs during processing.

3.1.4 Read Out

Lastly, we also implement various read-out functions to obtain subgraph representations from

its final node features. The most basic functions include summation and average pooling of

node features:

29

ADD POOL:hGS1
=

∑
v∈VSi

hv , MEAN POOL:hGS1
=

∑
v∈VSi

hv

|VSi
|

More advanced functions include the degree pool, which calculates a weighted summation

based on node degree,

DEG POOL:hGS1
=

∑
v∈VSi

hv ·Deg(v)∑
v∈VSi

Deg(v)

and the attention pool, which trains an attention layer for each node.

The effectiveness of different pooling methods can vary significantly across datasets due

to their underlying characteristics. For instance, additive pooling may be more sensitive

to subgraph size, whereas attention-based pooling offers greater expressiveness by treating

each node distinctly. This distinction highlights the importance of selecting an appropriate

pooling strategy in our training process.

3.2 Subgraph Reconstructive Pretraining (SRP)

While exploring various prompt methods, we discovered that there are limitations in our

pretraining objective, which is mostly designed for node-level or graph-level activities. Iden-

tifying this gap, we suggest a new pretraining strategy built around the idea of efficient graph

reconstruction. This approach seeks to improve the model’s resistance to vertex removals

and its capacity to extract and integrate complicated structural information.

Drawing inspiration from the concept of k-reconstruction of graphs [22] or the ability to

reconstruct the original graph from its induced k-vertex subgraphs that is proved to enhance

the expressive power of GNNs. We transformed this approach into a pretraining objective

that not only boosts the expressiveness of the GNN but also aligns closely with the down-

stream task of subgraph classification. This alignment ensures that the pretraining phase

effectively prepares the GNN for specific challenges encountered in subgraph classification,

30

thereby improving overall model performance.

Formally, the k-reconstruction of graphs aims to be able to reconstruct the feature of a

graph G

h(G) = f(CONCAT ({hGSi
: Si ∈ G, |VSi

| = k}))

where f : R|V |×d → R|V |×d is some function that transforms in the feature space and CON-

CAT denotes the row-wise concatenation of a set of vectors of the same shape in some

arbitrary order.

In our subgraph reconstructive pretraining (SRP), we follow contrastive learning, which

requires a positive pair and a negative pair. We construct a triplet by randomly sampling

two subgraphs S and S ′ from the base graph G and a set of k vertex subgraphs induced from

S as Si. The idea is that the reconstruction of a S’s k-induced subgraphs should be more

similar to the embedding of S than to the embedding of S ′. Formally, the positive pair is

h(GS), f(CONCAT ({hGSi
: Si ∈ GS, |VSi

| = k}))

and the negative pair is

h(GS′), f(CONCAT ({hGSi
: Si ∈ GS, |VSi

| = k})).

where the embeddings are produced from the GNNs defined. Similarity between embeddings

is simply defined as the cosine distance between the two vectors. Visually, the process is

shown in Figure 3.3.

In actual implementation, we sample subgraphs by BFS from random nodes, limiting

the maximum size. This allows us to efficiently get subgraphs that are mostly connected,

which preserves local information. k is chosen to be n− 2, where n = |VS| is the size of the

subgraph and |Si| = n of those induced k-subgraphs are randomly selected. This is chosen

based on the theoretical argument [22] that there exists a hierarchy of expressive power that

31

Figure 3.3: Overview of the proposed Subgraph Reconstructive Pretraining with k = 3

is monotonically increasing on k. Also, for more efficient training, we divide the sampled

subgraphs into batches, and all positive and negative pairs are constructed within the batch.

We kept the batch shuffled between each epoch to avoid any unwanted biases.

32

Chapter 4

Dataset And Experiment Setup

4.1 Datasets

The choice of datasets includes both synthetic datasets created for specific subgraph proper-

ties and real-world datasets. Synthetic datasets are adopted from the foundational SubGNN

paper [7], which includes the following four distinct datasets:

• Density: defined as D = 2|E|
|V |·|V−1| where |E| is the number of edges and |V | is the

number of vertices of the subgraph.

• Cut Ratio: defined CR = |BE|
|V ||G\V | where |BE| is the number of border edges connecting

nodes inside and outside of the subgraph, and |G\V | is the number of nodes in the

rest of the graph G.

• Coreness: defined as the average k-coreness of all nodes in the subgraph [23].

• Component: defined as the number of connected components in the subgraph.

Performance on synthetic datasets can help us understand which properties our algorithm

failed to learn and make adjustments accordingly. Besides synthetic datasets, we also utilize

real-world datasets in the realm of biology and social networks to evaluate the effectiveness

of our model in comprehending real-world information.

33

• ppi_bp [24]: human protein-protein interaction (PPI) network. The nodes in the net-

work represent human proteins, while the edges represent physical interactions between

the proteins. Subgraphs are collections of proteins involved in the same biological pro-

cess, which can be categorized into different categories like metabolism or development.

• em_user: A co-occurrence network is created with nodes representing each workout,

and edges are established between workouts completed by multiple users concurrently.

Subgraphs are selected by conducting a random walk on a user’s workout history and

labeled based on the user’s gender.

• hpo_metab [25]: a knowledge graph containing genotype and phenotypic data related

to rare diseases. Subgraphs are groups of phenotypes classified by the subcategory of

metabolic disorders that are connected to a rare monogenic disease.

• hpo_neuro [25]: Same base graph as hpo_metab, but focused on neurological disor-

ders.

Some basic statistics of the data are shown in Table 4.1. We observed that this selection

of datasets was composed of various sizes, densities, and numbers of classes, which would

test the robustness of our algorithm.

Table 4.1: Summary of dataset statistics

Background Background Subgraph # Subgraphs # Classes
Nodes # Edges Ave # nodes

DENSITY 5,000 29.521 20 250 3
CUT RATIO 5,000 83,969 20 250 3
CORENESS 5,000 118,785 20 221 3
COMPONENT 19,555 43,701 65.04 250 2
PPI-BP 17,080 316,95 10.20 1,591 6
HPO-METAB 14,587 3,238,174 14.44 2,400 6
HPO-NEURO 14,587 3,238,174 14.84 4,000 10
EM-USER 57,333 4,573,417 155.42 324 2

The distribution of label classes across each dataset is depicted in Figure 4.1. Although

the synthetic datasets and most real-world datasets exhibit a balanced class distribution,

34

PPI_PI is notably characterized by a skewed class distribution. It is also important to

mention that the class percentages for HPO_NEURO do not sum to 100% because it is

a multi-label dataset, allowing each subgraph to be associated with multiple classes. Un-

derstanding the class distribution is crucial, particularly for few-shot learning, where the

number of training samples per class is restricted—such as in 5-shot learning, which involves

selecting five subgraphs from each class for our training set. Consequently, few-shot learning

could introduce biases to an unbalanced dataset.

Figure 4.1: Dataset class distribution

4.2 Objective Function and Evaluation

To make the final prediction from the learned subgraph representation, we adopted two

different inference algorithms. The first and most common approach is to input a subgraph

graph representation into a MLP layer and output a class label, which is then put through

35

the negative log-likelihood function to get our loss.

However, due to the limitations of few-shot learning and the burden of additional param-

eters to train in the MLP layer, we also explore the prototype idea from GraphPrompt [16],

where we create class prototypes for subgraph representations during the training phase. We

calculate the label by comparing the similarity of the test subgraph representation to each

class prototype. Formally, the definition is that for pairs of samples (si, yi) in the training

set, the loss of the prompt is defined as

L = −
∑
(si,yi)

ln
exp(sim(si, pyi))∑
c∈Y exp(sim(si, pc))

where si is the subgraph representation output by the model, pc is the class prototype for

class c ∈ Y , and sim is a similarity function such as cosine.

To measure the performance of our classification, we sum over the confusion matrix of

each class c to get both accuracy as

ACC =

∑
c∈C(TPc + TNc)∑

c∈C(TPc + TNc + FPc + FNc)

and micro-F1 score as

micro-F1 =
2 ∗ precision ∗ recall
precision+ recal

=

2·TP ·TP
(TP+TN)(TP+FP)

TP
TP+TN

+ TP
TP+FP

=

∑
c∈C TPc∑

c∈C TPc +
1
2
(FPc + FNc)

Besides, there are complications in deciding the best epoch result. Existing literature

often use methods like 1) the lowest training loss, which might be overfitting. 2) best

validation accuracy, which assumes the validation set is available; and 3) set number of

epochs, which can have an uncontrolled randomized effect. However, due to the high variance

of few-shot training, we decided to choose a combined strategy where we pick a set number

of epochs to stop at for each dataset based on the best average validation score for 10 runs.

These combat both the high variance of performance and the cherry-picking results for the

36

specific training set.

4.3 Baseline Methods

To demonstrate the efficacy of our proposed MPrompt method, we conducted performance

comparisons with several baseline methods commonly used in subgraph classification. Given

that few-shot learning within subgraph classification remains relatively unexplored, all base-

line methods utilized for comparison are traditionally designed for full-shot scenarios. This

comparison provides insight into how well MPrompt adapts to the unique challenges of few-

shot learning compared to standard approaches. We categorize our baseline methods along

two dimensions: 1) whether it considers the subgraph as segregated from the background

graph, and 2) whether the algorithm is primarily GNN-based, as shown in Table 4.2.

Segregated Connected

GNN based GNN Seg, Virtual Node Seg GLASS, SubGNN, GNN Plain

Not GNN based Sub2Vec, Average Node Embedding \

Table 4.2: Baseline Algorithms sorted into their respective categories

GNN-based algorithms that consider the entire background graph are the current state-

of-the-art for subgraph classification, which includes GLASS, SubGNN, and GNN Plain,

which are detaily discussed in previous sections.

• GLASS [8]: Primary baseline methods have the ability to capture complex subgraph

properties through simple message passing and node annotating.

• SubGNN [7]: Augmented message passing with additional information from sampled

anchor patches in the entire graph to get information on both internal and border

graph properties. Due to its highly complex computation structure and the proof that

GLASS is strictly superior in all datasets, we only consider it while comparing full-shot

performance.

37

• GNN Plain [8]: GNN Plain is adopted from the baseline methods used in GLASS, which

is a simple GNN with no specific augmentation made for subgraph classification. The

final prediction is simply made by pooling all final node features output by the GNN.

On the other hand, we can also simply consider subgraph classification as graph classifi-

cation by isolating the subgraph from the rest of the background graph, which gives us GNN

Seg and Virtual Node Seg.

• GNN Seg [8]: GNN Seg is also adopted from the baseline methods used in GLASS,

which have the same simple GNN backbone but treat each subgraph as an isolated

graph from the background graph. Messages are only propagated within nodes inside

the subgraph. The final subgraph feature is a pooling of all of its node features.

• Virtual Node Seg [26]: Virtual Node Seg is GNN Seg with a virtual node augmented to

each isolated subgraph, which is a common practice in graph classification. This would

be especially useful for the COMPONENT synthetic dataset, as the virtual node can

connect different components of the subgraph.

Lastly, we also consider two traditional methods of graph representation learning that do

not rely on a GNN backbone.

• Sub2Vec [6]: Obtain graph structure through a random walk-sampled path through a

language model. We simply isolated the subgraphs as separate graphs in this algorithm

without preserving the original node ID, as it only considers topological structures.

• Average Node Embedding (AVE): The most traditional baseline is one where we simply

remove all edge information and pool all node features of the subgraph. However, as all

subgraph datasets do not have node features to start with, we use pre-trained node fea-

tures from our edge prediction GNN. Therefore, this baseline would be more powerful

than normal average node embedding as it contains edge information implicitly.

38

4.4 Computation Setup

For our model, we utilized PyTorch and PyTorch Geometric as the primary libraries, running

our experiments on two NVIDIA V100 GPUs, each equipped with 16GB of memory, to

evaluate both performance and computational efficiency. The experiments were conducted

on a Linux server configured with 32 CPU cores and a total of 50GB of RAM.

39

Chapter 5

Results

This chapter presents the performance of our proposed methods on the datasets in compar-

ison to the baseline methods detailed in Chapter 4. Note that we separately present results

for MPrompt and Subgraph Reconstructive Pretraining instead of combining them in the

same pipeline.

5.1 MPrompt Results

Fewshot Construction Before presenting the results, we would like to clarify how we

designed our few-shot experiment. Following traditional definitions, k-shot refers to having

k samples of each class in the training set. However, one of our datasets, HPO_NEURO,

is multi-labeled, which means that each subgraph can have multiple labels, which makes it

almost impossible to sample exactly k subgraphs for each class, and the resulting training set

can be significantly smaller. Thus, for HPO_NEURO, we define k-shot as k% of its original

training set.

Implementation-wise, we first split all subgraphs into Train, Validation, and Test, and

then randomly sample a few shot examples from the subgraphs. To eliminate unwanted

bias, we resplit the dataset into 60%, 20%, and 20% on a set random seed that is used across

testing of all methods.

40

None of the subgraph datasets provide node features; therefore, we initialized the node

features to one feature for synthetics and node ID features for the real world before pretrain-

ing. The rationale is that synthetic datasets are usually smaller, and the properties we aim

to predict do not require distinguishing each individual node.

5.1.1 Synthetic Dataset

We first present results on synthetic datasets, which clearly show the ability of our model to

understand the topological properties of subgraphs.

Table 5.1: Comparison with other baseline strategies on synthetic datasets in a 10-shot
setting. All datasets use the micro-F1 metric and standard deviation calculated with 10
runs.

CUT RATIO CORENESS DENSITY COMPONENT

MPrompt (add) 0.920 ± 0.041 0.784 ± 0.033 0.849 ± 0.027 0.865 ± 0.896

MPrompt (MLP) 0.938 ± 0.026 0.764 ± 0.072 0.869 ± 0.044 1.000 ± 0.000

AVE 0.811 ± 0.027 0.430 ± 0.085 0.584 ± 0.068 0.984 ± 0.047

AVE(Attention) 0.795 ± 0.148 0.430 ± 0.060 0.621 ± 0.046 0.927 ± 0.061

Virtual Node Seg 0.272 ± 0.079 0.364 ± 0.011 0.380 ± 0.035 1.000 ± 0.000

GNN_Seg 0.272 ± 0.079 0.364 ± 0.011 0.381 ± 0.054 1.000 ± 0.000

Sub2Vec 0.333 ± 0.049 0.477 ± 0.071 0.611 ± 0.061 0.602 ± 0.086

GNN_Plain 0.502 ± 0.191 0.388 ± 0.054 0.473 ± 0.0198 1.000 ± 0.000

GLASS 0.924 ± 0.017 0.760 ±0.042 0.897 ± 0.030 0.974 ± 0.042

Specifically, we are most interested in CUT RATIO and CORENESS, which are the two

datasets that include both internal and border topology information, as described in the

previous chapter. In contrast, DENSITY and COMPONENT can be successfully calculated

just based on an isolated subgraph. This is also why we see a significant drop in performance

for the segregated baseline methods (e.g., GNN Seg, Virtual Node Seg, and Sub2Vec) com-

pared to the rest. For these two datasets, MPrompt is able to achieve superior performance,

as bolded in Table 5.1.

41

The other two datasets, COMPONENT and DENSITY, have properties that solely care

about the subgraph’s internal structure and have no connection to the background graph.

Consequently, we observe that GLASS may overfit the problem, whereas GNN Seg and Vir-

tual Node Seg are able to obtain more consistent performance. Although it might seem that

AVE’s lack of edge information would prevent it from accurately learning COMPONENT,

since our node features are pre-trained with edge prediction, there would be sufficient in-

formation to identify the link. We will not present performance data for DENSITY and

COMPONENT for the remainder of this chapter, as these tasks are too simple to demon-

strate our algorithms’ effectiveness.

5.1.2 Real World Dataset

Next, we examine real-world dataset performance, which can help us better understand how

our methods are able to extract real-world information. The values bolded in Table 5.2

represent the best performance, taking one standard deviation of the interval, because these

datasets are generally significantly noisier. This allows us to make a fair comparison and go

beyond the random sample bias, which has an impact on performance.

Our method achieves the best performance on PPI_BP, EM_USER, and HPO_METAB

with significant performance increases for HPO_METAB and EM_USER. The lower per-

formance on HPO_NEURO compared to GLASS happens as we take 10% of the training

set (400 subgraphs), which is significantly larger than fewshot training in other datasets. As

our method is specifically developed for few-shot learning, it is expected that it will not be

exceptional on larger training sets.

Additionally, we see that the PPI_BP dataset exhibits varying performance, which can

be attributed to its unbalanced class distribution, in which the first class represents roughly

30% of the dataset. We find that AVE performs substantially better than the other baselines

except GLASS. This gap may be caused by this imbalance, but it may also indicate that

the internal topology is less informative. In particular, PPI_BP subgraphs are considerably

42

Table 5.2: Comparison with other baseline strategies on real-world datasets in a 10-shot
setting. All datasets use the micro-F1 metric and standard deviation calculated with 10
runs.

PPI-BP EM-USER HPO-METAB HPO-NEURO

MPrompt (add) 0.259 ± 0.036 0.548 ± 0.072 0.399 ± 0.021 0.370 ± 0.030

MPrompt (MLP) 0.282 ± 0.033 0.683 ± 0.080 0.414 ± 0.019 0.475 ± 0.013

AVE 0.286 ± 0.044 0.516 ± 0.081 0.244 ± 0.043 0.271 ± 0.018

AVE(Attention) 0.287 ± 0.055 0.529 ± 0.093 0.170 ± 0.052 0.168 ± 0.051

Sub2Vec 0.264 ± 0.019 0.533 ± 0.066 0.141 ± 0.050 0.229 ± 0.055

Virtual Node Seg 0.213 ± 0.045 0.474 ± 0.024 0.160 ± 0.014 0.000 ± 0.000

GNN Seg 0.200 ± 0.019 0.482 ± 0.019 0.179 ± 0.030 0.233 ± 0.069

GNN Plain 0.224 ± 0.025 0.661 ± 0.068 0.288 ± 0.017 0.501 ± 0.097

GLASS 0.306 ± 0.025 0.662 ± 0.089 0.365 ± 0.038 0.517 ± 0.017

smaller than those in HPO_METAB, which has dense local information.

5.1.3 Ablation Study Results

We demonstrate the method’s robustness to variations in the number of shots and the effi-

ciency of our suggested Node Membership prompt adaptation through a series of ablation

studies.

Impact of shots on Performance

A key factor influencing performance is undoubtedly the size of the training set. To

verify the robustness of our algorithm, we conducted experiments with varying numbers of

training examples, specifically 1, 3, 5, and 10 shots. Overall, MPrompt is able to maintain a

steady lead in the majority of the datasets across shot counts. Lower performance on 1-shot

scenarios can be caused by pure randomness in training set construction.

As depicted in Figure 5.1, we generally observed an increasing trend in performance

with more training samples. However, an exception appeared with GNN Seg, where per-

43

(a) CUT_RATIO (b) CORENESS

(c) PPI_BP (d) EM_USER

(e) HPO_METAB (f) HPO_NEURO

Figure 5.1: Ablation study on impact of shot count on performance. All datasets use the
micro-F1 metric.

44

formance sometimes remained stagnant. This anomaly can be attributed to the fact that

segregated graphs do not provide any information about their class (e.g., CORENESS and

CUT RATIO). Therefore, additional training samples do not contribute additional useful

information for these cases. GLASS in general has a steeper slope compared to MPrompt,

as it contains more parameters and is more sensitive to changes in training size. Specifically,

for CORENESS in Figure 5.1b, we see a conversion of performance across MPrompt and

baseline methods when shot counts increase.

Standard deviations are omitted from the graph for better visualization.

Effectiveness of Node Membership

By contrasting MPrompt with Single Prompt—which essentially uses the same prompt

for nodes inside and outside of the subgraph—we can see the effectiveness of the proposed

node membership. Both MLP and addition single prompts are constructed for comparison.

Table 5.3 confirms that, when we keep to the prior standards of incorporating confidence

intervals for real-world datasets, MPrompt consistently outperforms Single Prompt across

all datasets.

We observe that in single prompts, Addition outperforms MLP more frequently compared

to when using MPrompt. As single prompt is incapable of distinguishing these properties

in question for the task, adding more complexity by using MLP would just increase the

probability of overfitting. This hypothesis is further proved by the fact that this gap between

MLP and addition single prompt only exists in the synthetic datasets, which specifically

require knowledge of node membership.

Table 5.3: Ablation study on the effectiveness of node membership in a 10-shot setting. All
datasets use the micro-F1 metric and standard deviation calculated with 10 runs.

CUT RATIO CORENESS PPI-BP EM-USER HPO-METAB HPO-NEURO

MPrompt (add) 0.920 ± 0.041 0.784 ± 0.033 0.259 ± 0.036 0.548 ± 0.072 0.399 ± 0.021 0.370 ± 0.030

MPrompt (MLP) 0.938 ± 0.026 0.764 ± 0.072 0.282 ± 0.033 0.683 ± 0.080 0.414 ± 0.019 0.475 ± 0.013

Single prompt (add) 0.919 ± 0.031 0.782 ± 0.034 0.254 ± 0.045 0.559 ± 0.080 0.316 ± 0.050 0.443 ± 0.043

Single prompt (MLP) 0.872 ± 0.049 0.533 ± 0.068 0.269 ± 0.037 0.647 ± 0.077 0.406 ± 0.019 0.502 ± 0.029

45

Full-shot performance

Although MPrompt is not designed for full-shot tasks, it shows overall comparable and

even improvement in performance compared to other supervised subgraph classification al-

gorithms, as shown in Table 5.4. The unexpected improvements can be attributed to the fact

that most of the information that is crucial for making classifications is learned during the

pretraining phase, which decreases the need for complicated structures during downstream

tuning. Segregated methods like Sub2Vec and GNN Seg also tend to have extremely low

performance as they lack key connections to the background graph.

Table 5.4: Ablation study on full shot performance for synthetic and real-world datasets.
All datasets use the micro-F1 metric and standard deviation calculated with 6 runs.

CUT RATIO CORENESS PPI-BP EM-USER HPO-METAB HPO-NEURO

MPrompt (add) 0.933 ± 0.009 0.770 ± 0.042 0.483 ± 0.001 0.747 ± 0.038 0.803 ± 0.015 0.530 ± 0.019

MPrompt (MLP) 0.960 ± 0.000 0.815 ± 0.042 0.493 ± 0.016 0.818 ± 0.021 0.847 ± 0.005 0.670 ± 0.005

Sub2Vec 0.365 ± 0.022 0.487 ± 0.0061 0.299 ± 0.026 0.614 ± 0.092 0.286 ± 0.014 0.231 ± 0.053

GNN Seg 0.274 ± 0.075 0.333 ± 0.048 0.323 ± 0.000 0.670 ± 0.028 0.193 ± 0.026 0.251 ± 0.076

GNN_Plain 0.499 ± 0.268 0.792 ± 0.052 0.485 ± 0.015 0.803 ± 0.012 0.797 ± 0.004 0.633 ± 0.007

SubGNN 0.520 ± 0.021 0.593 ± 0.093 0.773 ± 0.012 0.813 ± 0.010 0.724 ± 0.006

GLASS 0.933 ± 0.019 0.815 ± 0.010 0.527 ± 0.009 0.793 ± 0.007 0.806 ± 0.012 0.758 ± 0.004

Note that full-shot numbers differ from the original GLASS [8] and SubGNN [7] papers

as we implemented a different random split of the dataset, a different process of picking

the best epoch, and different pre-train node features. Since MPrompt is tested with these

newly defined procedures, to maintain fair comparison, we also measure our baseline methods

accordingly. SubGNN performance is not reported for PPI_BP as its preprocessing phase

does not finish within 24 hours, which is cross-proven by other conference papers[27].

Effectiveness of Prompting

In order to demonstrate the advantages of prompting over direct GNN tuning, we contrast

MPrompt with FINETUNE, which functions as an MLP prompt while the GNN weights are

not frozen. As a result, during the training phase of FINETUNE, additional parameters

would be updated. With the exception of the HPO_NEURO dataset, Table 5.5 shows that

46

MPrompt performs better than FINETUNE. This is expected given that FINETUNE would

be more susceptible to overfitting when it had fewer training samples.

Table 5.5: Ablation study on the effectiveness of Prompting in a 10-shot setting. All datasets
use the micro-F1 metric and standard deviation calculated with 10 runs.

CUT RATIO CORENESS PPI-BP EM-USER HPO-METAB HPO-NEURO

MPrompt (add) 0.920 ± 0.041 0.784 ± 0.033 0.259 ± 0.036 0.548 ± 0.072 0.399 ± 0.021 0.370 ± 0.030

MPrompt (MLP) 0.938 ± 0.026 0.764 ± 0.072 0.282 ± 0.033 0.683 ± 0.080 0.414 ± 0.019 0.475 ± 0.013

FINETUNE 0.908 ± 0.036 0.707 ± 0.066 0.282 ± 0.031 0.599 ± 0.081 0.387 ± 0.028 0.522 ± 0.01

5.2 Subgraph Reconstructive Pretraining Results

In this section, we present the results of our proposed Subgraph Reconstructive Pretraining

(SRP) algorithm and compare it to the traditional edge prediction method. Due to com-

putational, memory, and time constraints, we report performance only for CUT RATIO,

CORENESS, PPI BP, and EM USER. The number of subgraphs sampled is proportional to

the total available in the dataset, leading to significantly higher computational demands for

both HPO datasets compared to others. Specifically, SRP (random) involves sampling five

times the number of subgraphs present in the dataset for pretraining, with each subgraph

containing up to 100 nodes. SRP (In dataset), on the other hand, utilizes all existing sub-

graphs directly for pretraining. It is important to note that this approach does not introduce

any sampling bias, as subgraph labels are not used during the pretraining phase.

We first evaluate the performance of our generated node features using the AVE method,

which serves as the most direct indicator of the effectiveness of pretraining. From Table

5.6, it is evident that our Subgraph Reconstructive Pretraining (SRP) significantly enhances

performance on synthetic datasets, particularly when using SRP (In dataset). This im-

provement can be attributed to the uniform distribution of the properties of interest (e.g.,

for CUT RATIO, the classes are divided into subgraphs with high, medium, and low CUT

47

RATIO), ensuring that the sampled subgraphs closely align with the expected distribution.

Conversely, SRP shows diminished performance on real-world datasets, where the subgraphs

of interest typically exhibit specific characteristics that random sampling fails to capture.

Moreover, using these specific subgraphs directly for pretraining does not sufficiently ex-

pose the algorithm to a broad spectrum of general subgraph knowledge, thereby limiting its

performance.

Pretrain 1 shot 3 shots 5 shots 10 shots full shots

CUT RATIO

SRP (In dataset) 0.851 ± 0.085 0.924 ± 0.022 0.932 ± 0.018 0.930 ± 0.031 0.947 ± 0.015

SRP (Random) 0.695 ± 0.126 0.819 ± 0.074 0.887 ± 0.053 0.941 ± 0.025 0.968 ± 0.0

Edge Prediction 0.565 ± 0.077 0.800 ± 0.076 0.869 ± 0.033 0.911 ± 0.027 0.926 ± 0.007

CORENESS

SRP (In dataset) 0.418 ± 0.058 0.441 ± 0.102 0.448 ± 0.073 0.445 ± 0.038 0.560 ± 0.008

SRP (Random) 0.362 ± 0.097 0.380 ± 0.064 0.407 ± 0.063 0.479 ± 0.058 0.577 ± 0.022

Edge Prediction 0.362 ± 0.080 0.391 ± 0.082 0.398 ± 0.092 0.430 ± 0.085 0.369 ± 0.046

PPI BP

SRP (In dataset) 0.165 ± 0.032 0.183 ± 0.028 0.199 ± 0.035 0.212 ± 0.028 0.392 ± 0.010

SRP (Random) 0.159 ± 0.032 0.172 ± 0.016 0.189 ± 0.033 0.175 ± 0.033 0.310 ± 0.011

Edge Prediction 0.195 ± 0.031 0.237 ± 0.034 0.235 ± 0.049 0.286 ± 0.044 0.542 ± 0.007

EM USER

SRP (In dataset) 0.515 ± 0.081 0.496 ± 0.093 0.447 ± 0.077 0.514 ± 0.051 0.544 ± 0.042

SRP (Random) 0.478 ± 0.080 0.484 ± 0.084 0.489 ± 0.064 0.492 ± 0.036 0.463 ± 0.082

Edge Prediction 0.520 ± 0.068 0.512 ± 0.065 0.514 ± 0.065 0.516 ± 0.081 0.752 ± 0.029

Table 5.6: Summary of results for different pretraining with AVE downstream algorithm.All
datasets use the micro-F1 metric and standard deviation calculated with 10 runs.

We further assessed the quality of the features generated using more complex GNN-

based methods in Table 5.7. We excluded MPrompt from this evaluation because the GNN

model used during pretraining lacks relevant information for the downstream task, making

48

it impractical to retain the model weights frozen. Consequently, we focused our testing on

GLASS and GNN Plain.

SRP demonstrates better performance compared to GNN Plain, benefiting from its sim-

pler yet effective architecture relative to GLASS, which gains more on better initial node

features. This improvement is particularly evident in situations with fewer training exam-

ples, where the GNN backbone has limited data to learn from. The fact that SRP achieves

performance comparable to GLASS when using GNN Plain on synthetic datasets indicates

that the node features generated by SRP possibly contain valuable node membership infor-

mation. Moreover, SRP results are subject to increase as the model hyperparameters are

not exhaustively searched through.

Overall, SRP seems to be a pretraining method that has huge potential in subgraph

prediction tasks and also has the potential to generalize in other areas.

49

Pretrain Downstream 1 shot 3 shots 5 shots 10 shots full shots

CUT RATIO

SRP (Random) GNN Plain 0.844 ± 0.069 0.898 ± 0.023 0.900 ± 0.032 0.906 ± 0.015 0.913 ± 0.009

SRP (Random) GLASS 0.828 ± 0.136 0.895 ± 0.033 0.920 ± 0.018 0.918 ± 0.014 0.927 ± 0.009

edge prediction GNN Plain 0.490± 0.148 0.488± 0.151 0.572± 0.179 0.502± 0.191 0.699± 0.268

edge prediction GLASS 0.824 ± 0.083 0.919 ± 0.028 0.924 ± 0.019 0.924 ± 0.017 0.920 ± 0.0

CORENESS

SRP (Random) GNN Plain 0.396 ± 0.092 0.444 ± 0.046 0.444 ± 0.058 0.522 ± 0.045 0.467 ± 0.018

SRP (Random) GLASS 0.402 ± 0.124 0.562 ± 0.084 0.676 ± 0.075 0.740 ± 0.054 0.778 ± 0.031

edge prediction GNN Plain 0.362± 0.059 0.380± 0.032 0.384± 0.028 0.388± 0.054 0.392± 0.052

edge prediction GLASS 0.398 ± 0.101 0.593 ± 0.125 0.671 ± 0.050 0.760 ± 0.042 0.815 ± 0.010

PPI BP

SRP (Random) GNN Plain 0.224 ± 0.042 0.246 ± 0.026 0.272 ± 0.024 0.318 ± 0.029 0.521 ± 0.017

SRP (Random) GLASS 0.199 ± 0.024 0.220 ± 0.032 0.249 ± 0.032 0.281 ± 0.035 0.510 ± 0.017

edge prediction GNN Plain 0.178± 0.032 0.177± 0.030 0.197± 0.033 0.224± 0.025 0.385± 0.015

edge prediction GLASS 0.230 ± 0.035 0.262 ± 0.042 0.283 ± 0.032 0.306 ± 0.025 0.527 ± 0.009

EM USER

SRP (Random) GNN Plain 0.488 ± 0.029 0.532 ± 0.042 0.612 ± 0.059 0.678 ± 0.103 0.778 ± 0.068

SRP (Random) GLASS 0.494 ± 0.030 0.527 ± 0.047 0.489 ± 0.068 0.516 ± 0.076 0.449 ± 0.073

edge prediction GNN Plain 0.541± 0.065 0.568± 0.048 0.595± 0.077 0.661± 0.068 0.803± 0.012

edge prediction GLASS 0.558 ± 0.059 0.567 ± 0.027 0.574 ± 0.073 0.662 ± 0.089 0.793 ± 0.007

Table 5.7: Summary of results for different pretraining with GNN-based downstream algo-
rithm. All datasets use the micro-F1 metric and standard deviation calculated with 10 runs.

50

Chapter 6

Conclusion

In this thesis, we introduced MPrompt, a specialized prompting method that leverages node

membership knowledge and is based on Graph Neural Networks (GNN) to enhance few-

shot subgraph classification across both synthetic and real-world datasets. Furthermore,

we investigated an innovative pretraining approach, Subgraph Reconstructive Pretraining

(SRP), which has great potential for enhancing the node features generated.

This research contributes significantly to the field of machine learning by proposing an

improved model architecture while also making substantial real-world impacts, such as pre-

dicting molecular properties, identifying diseases, or detecting financial fraud when applying

the algorithm to real datasets.

We recognize that there are areas for improvement and opportunities for further develop-

ment in this work. Due to computational resource limitations and time constraints, we were

unable to conduct exhaustive tests and hyperparameter tuning for all proposed methods,

particularly for SRP. Future research directions worth exploring include:

• Extension of Node Membership: Currently our Node Membership concept only dis-

tinguishes whether or not the node belongs in a subgraph, yet, nodes outside of the

subgraph can be worth different importance. For example, future directions can con-

sider labeling the nodes based on their distance to the subgraph.

51

• Pretrained Node Feature: The existing edge prediction node feature, even without

considering SRP, is a rather basic method in comparison to the vast number of so-

phisticated graph representational learning techniques that exist in the field. We can

anticipate greater performance improvements with a stronger pretrained node feature,

particularly as prompting algorithms rely more on the initial node feature.

• GNN Architecture: For improved representational capacity, the underlying GNN used

for the downstream job can be extended to more complex structures like GAT[2] or

Graph Sage (GSAGE)[5]. Furthermore, we may think about incorporating specific

techniques, such as Neighborhood Wasserstein Reconstruction [28], to improve few-shot

subgraph representation learning by better understanding of structural information.

52

Appendix A

GLASS mixture implementation

The actual implementation of GLASS which uses different MLP layers to transform nodes

in and out of the subgraph, uses a weighted mixture and skip layer to finally update the

message to the original node feature.

transform node features with different parameters individually.

x1 = self.activation(self.trans_fns[1](x_))

x0 = self.activation(self.trans_fns[0](x_))

mix transformed feature.

x = torch.where(mask , self.z_ratio * x1 + (1 - self.z_ratio) * x0 ,

self.z_ratio * x0 + (1 - self.z_ratio) * x1)

pass messages.

x = self.adj @ x

x = self.gn(x)

x = F.dropout(x, p=self.dropout , training=self.training)

x = torch.cat((x, x_), dim=-1)

transform node features with different parameters individually.

x1 = self.comb_fns[1](x)

x0 = self.comb_fns[0](x)

mix transformed feature.

x = torch.where(mask , self.z_ratio * x1 + (1 - self.z_ratio) * x0 ,

self.z_ratio * x0 + (1 - self.z_ratio) * x1)

53

References

[1] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message

passing for quantum chemistry,” 2017. arXiv: 1704.01212 [cs.LG].

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

Attention Networks,” International Conference on Learning Representations,

2018. [Online]. Available: https://openreview.net/forum?id=rJXMpikCZ.

[3] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural

networks?” CoRR, vol. abs/1810.00826, 2018. arXiv: 1810.00826. [Online]. Available:

http://arxiv.org/abs/1810.00826.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” 2017. arXiv: 1609.02907 [cs.LG].

[5] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on

large graphs,” 2018. arXiv: 1706.02216 [cs.SI].

[6] B. Adhikari, Y. Zhang, N. Ramakrishnan, and B. A. Prakash, “Distributed

representation of subgraphs,” CoRR, vol. abs/1702.06921, 2017. arXiv: 1702.06921.

[Online]. Available: http://arxiv.org/abs/1702.06921.

[7] E. Alsentzer, S. G. Finlayson, M. M. Li, and M. Zitnik, “Subgraph neural networks,”

CoRR, vol. abs/2006.10538, 2020. arXiv: 2006.10538. [Online]. Available:

https://arxiv.org/abs/2006.10538.

54

https://arxiv.org/abs/1704.01212
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1702.06921
http://arxiv.org/abs/1702.06921
https://arxiv.org/abs/2006.10538
https://arxiv.org/abs/2006.10538

[8] X. Wang and M. Zhang, “GLASS: GNN with labeling tricks for subgraph

representation learning,” in International Conference on Learning

Representations, 2022. [Online]. Available:

https://openreview.net/forum?id=XLxhEjKNbXj.

[9] Y. Liu, S. Pan, M. Jin, C. Zhou, F. Xia, and P. S. Yu, “Graph self-supervised

learning: A survey,” CoRR, vol. abs/2103.00111, 2021. arXiv: 2103.00111. [Online].

Available: https://arxiv.org/abs/2103.00111.

[10] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. S. Pande, and J. Leskovec,

“Pre-training graph neural networks,” CoRR, vol. abs/1905.12265, 2019. arXiv:

1905.12265. [Online]. Available: http://arxiv.org/abs/1905.12265.

[11] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph contrastive

learning,” CoRR, vol. abs/2109.01116, 2021. arXiv: 2109.01116. [Online]. Available:

https://arxiv.org/abs/2109.01116.

[12] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” 2018.

arXiv: 1802.09691 [cs.LG].

[13] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep

graph infomax,” 2018. arXiv: 1809.10341 [stat.ML].

[14] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive

learning with augmentations,” 2021. arXiv: 2010.13902 [cs.LG].

[15] J. Xia, L. Wu, J. Chen, B. Hu, and S. Z. Li, “Simgrace: A simple framework for

graph contrastive learning without data augmentation,” in Proceedings of the

ACM Web Conference 2022, ACM, Apr. 2022. doi: 10.1145/3485447.3512156.

[Online]. Available: http://dx.doi.org/10.1145/3485447.3512156.

[16] Z. Liu, X. Yu, Y. Fang, and X. Zhang, “Graphprompt: Unifying pre-training and

downstream tasks for graph neural networks,” 2023. arXiv: 2302.08043 [cs.LG].

55

https://openreview.net/forum?id=XLxhEjKNbXj
https://arxiv.org/abs/2103.00111
https://arxiv.org/abs/2103.00111
https://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1905.12265
https://arxiv.org/abs/2109.01116
https://arxiv.org/abs/2109.01116
https://arxiv.org/abs/1802.09691
https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/2010.13902
https://doi.org/10.1145/3485447.3512156
http://dx.doi.org/10.1145/3485447.3512156
https://arxiv.org/abs/2302.08043

[17] T. Fang, Y. Zhang, Y. Yang, C. Wang, and L. Chen, “Universal prompt tuning for

graph neural networks,” 2023. arXiv: 2209.15240 [cs.LG].

[18] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen, “Lora:

Low-rank adaptation of large language models,” CoRR, vol. abs/2106.09685, 2021.

arXiv: 2106.09685. [Online]. Available: https://arxiv.org/abs/2106.09685.

[19] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the em

algorithm,” Neural Computation, vol. 6, no. 2, pp. 181–214, Mar. 1994. doi:

10.1162/neco.1994.6.2.181.

[20] Z. Chen, Y. Deng, Y. Wu, Q. Gu, and Y. Li, “Towards understanding mixture of

experts in deep learning,” 2022. arXiv: 2208.02813 [cs.LG].

[21] T. Pham, T. Tran, K. H. Dam, and S. Venkatesh, “Graph classification via deep

learning with virtual nodes,” CoRR, vol. abs/1708.04357, 2017. arXiv: 1708.04357.

[Online]. Available: http://arxiv.org/abs/1708.04357.

[22] L. Cotta, C. Morris, and B. Ribeiro, “Reconstruction for powerful graph

representations,” CoRR, vol. abs/2110.00577, 2021. arXiv: 2110.00577. [Online].

Available: https://arxiv.org/abs/2110.00577.

[23] V. Batagelj and M. Zaveršnik, “An o(m) algorithm for cores decomposition of

networks,” CoRR, vol. cs.DS/0310049, Oct. 2003.

[24] M. Zitnik, R. Sosič, S. Maheshwari, and J. Leskovec, BioSNAP Datasets:

Stanford biomedical network dataset collection,

http://snap.stanford.edu/biodata, Aug. 2018.

[25] S. Köhler, M. Gargano, N. Matentzoglu, et al., The human phenotype ontology

in 2021, en, Jan. 2021.

[26] K. Ishiguro, S.-i. Maeda, and M. Koyama, “Graph warp module: An auxiliary module

for boosting the power of graph neural networks in molecular graph analysis,” arXiv

preprint arXiv:1902.01020, 2019.

56

https://arxiv.org/abs/2209.15240
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1162/neco.1994.6.2.181
https://arxiv.org/abs/2208.02813
https://arxiv.org/abs/1708.04357
http://arxiv.org/abs/1708.04357
https://arxiv.org/abs/2110.00577
https://arxiv.org/abs/2110.00577
http://snap.stanford.edu/biodata

[27] C. Liu, Y. Yang, Z. Xie, H. Lu, and Y. Ding, “Position-aware subgraph neural

networks with data-efficient learning,” in Proceedings of the Sixteenth ACM

International Conference on Web Search and Data Mining, ser. WSDM ’23,

ACM, Feb. 2023. doi: 10.1145/3539597.3570429. [Online]. Available:

http://dx.doi.org/10.1145/3539597.3570429.

[28] M. Tang, C. Yang, and P. Li, Graph auto-encoder via neighborhood

wasserstein reconstruction, 2022. arXiv: 2202.09025 [cs.LG].

57

https://doi.org/10.1145/3539597.3570429
http://dx.doi.org/10.1145/3539597.3570429
https://arxiv.org/abs/2202.09025

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Graph Neural Network
	1.2 Pre-training and Prompting

	2 Background and Related Work
	2.1 Supervised Subgraph Classification Algorithms
	2.2 Graph Pretraining Algorithms
	2.3 Graph Prompting Algorithms

	3 Proposed Work
	3.1 MPrompt
	3.1.1 GNN architecture and Prompt
	3.1.2 Node Membership
	3.1.3 Alternative Prompting Methods
	3.1.4 Read Out

	3.2 Subgraph Reconstructive Pretraining (SRP)

	4 Dataset And Experiment Setup
	4.1 Datasets
	4.2 Objective Function and Evaluation
	4.3 Baseline Methods
	4.4 Computation Setup

	5 Results
	5.1 MPrompt Results
	5.1.1 Synthetic Dataset
	5.1.2 Real World Dataset
	5.1.3 Ablation Study Results

	5.2 Subgraph Reconstructive Pretraining Results

	6 Conclusion
	A GLASS mixture implementation
	References

