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ABSTRACT

Deep learning has transformed almost all types of data (e.g., images, videos, documents)

into high-dimension vectors, which in turn forms Vector Databases as the data engines of various
applications. As a result, queries on vector databases have become the cornerstone for many

important online services, including search, eCommerce, and recommendation systems.

In a vector database, the major operation is to search the 𝑘 closest vectors to a given query

vector, known as 𝑘-Nearest-Neighbor (𝑘-NN) search. Due to massive data scale in practice,

Approximate Nearest-Neighbor (ANN), which builds a search index offline to accelerate search

online, is often used instead. One of the most promising ANN indexing approaches is the graph-

based approach, which first constructs a proximity graph on the dataset, connecting pairs of

vectors that are close to each other, then traverse the proximity graph for each query to find the

closest vectors to a query vector. The search performance, in terms of the scope of traversal that

leads to convergence, is highly dependent on the quality of the graph. There exist lots of prior

work on improving the graph quality with various heuristics. However, no analysis or modeling

work has been done to quatitatively evaluate the heuristics and their impact on the performance.

Hence, it is unclear how to pick or combine the right heuristics to build a high-quality graph.

This thesis aims to establish this connection to fill the gap. The key challenge in quantifying

the heuristics is the complex tradeoff between the search accuracy and search speed, which makes

it almost impossible to establish an analytical model. To this end, we propose to leverage machine

learning as the modeling tool. We first build an unified framework to characterize various graph

building heuristics, by decoupling the graph construction and search phases. We then extract

graph attributes (e.g., diameter), and collect ground-truth performance data (e.g., search speed

and accuracy) within our framework, across multiple datasets and graph configurations. Based on

the collected data, we train a linear regression model to predict the search performance. We show

experimental results on our model performance, and also discuss the implications on selecting

heuristics that improve the quality of the indexing graphs.
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Chapter 1

Introduction

Recent advances in deep learning have enabled the transformation of various data types (e.g.,

images, videos, documents) into high-dimensional vectors. This capability facilitates complex

semantic analysis, which is the key to numerous online services such as search [1], model serv-

ing [2]–[4], eCommerce platforms [5], and recommendation systems [6]. In order to efficiently

manage large-scale vector data, there is a huge trend in building vector databases and vector search

engines, such as Meta’s Faiss [7], Google’s ScaNN [8], Microsoft’s DiskANN [9], and Amazon

DocumentDB, that integrate vector search systems with relational databases.

In a vector database, the major operation is to search the 𝑘 closest vectors to a given query

vector, known as 𝑘-Nearest-Neighbor (𝑘-NN) search. In real-world databases, the data size

is often massive, e.g., billions of vectors. Therefore, exact 𝑘-NN search in vector database is

extremely expensive in terms of computation. On the other hand, the online services on top of

vector databases often require vector search to complete in milliseconds. Therefore, in practice,

approximate Nearest-Neighbor (ANN) [10], [11] is often used instead. In the ANN approach, we

usually build a search index offline, which can be leveraged to accelerate the search online. When

we perform the search, instead of a brute-force search used in the exact 𝑘-NN search, we search

only the most promising subareas in the database by following the index, and report the top-𝑘

selections found in these subareas. This approximate approach creates a tradeoff between the
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search speed and the search quality (i.e., accuracy), where one of the key design choices is how to

build a high quality index.

There are mainly two types of ANN indexing approaches: clustering-based and graph-based

indexing [12]. Clustering is a conventional approach, where the dataset is clustered offline and the

online search is performed only within the most promising clusters. Graph-based indexing [13]–

[15], however, first constructs a proximity graph on the dataset, connecting pairs of vectors that

are close to each other, and then performs a graph traversal on the proximity graph for each

query to find the closest vectors to a query vector. This approach has recently emerged as a more

attractive solution than clustering, as it provides a more effective way to navigate the search,

without being limited by the cluster boundaries. Its search performance, in terms of the scope of

graph traversal that leads to convergence, is then highly dependent on the quality of the graph.

To improve the graph quality, lots of approximations and heuristic decisions [14]–[18] have

been proposed in the literature, such as which connections (edges) to include or exclude and

how to integrate new data points (nodes). However, no analysis or modeling work has been

done to quantitatively evaluate the heuristics and their impact on the performance. As a result, it

remains unclear how to choose the right heuristics to build a high-quality graph. For instance,

graph-building methods might aim to restrict the degree of nodes, the expansion rate of the graph,

or the existence of short paths between nodes. These properties cannot be controlled directly

during graph-building. They are interdependent, and are often approximated to speed up the

graph building process. Additionally, the performance claims made by different studies are difficult

to verify, as implementation details can significantly affect search speed and accuracy.

We address these challenges by proposing a novel approach to quantitatively analyze different

graph construction methods. The key challenge in quantifying the heuristics is the complex

tradeoff between the search accuracy and search speed, which makes it almost impossible to

establish an analytical model. To this end, we propose a machine learning based approach to

help us with the modeling task. We first set up an unified performance evaluation framework in

Section 3.1 to evaluate various graph building heuristics, by decoupling the graph construction
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phase from the search phase (Section 3.2), and applying a common search process across different

graph construction heuristics. We implement all the representative heuristics in our framework to

enable fair comparison and eliminate implementation related noise in evaluation. Across multiple

datasets and graph configurations, we then extract graph structural attributes as input features

(Section 3.3), e.g., the diameter of the graph, and collect ground-truth data by running search

instances in out framework and collecting the performance metrics in terms of the search speed

and accuracy. Based on the collected data, we train a linear regression model (Section 3.4) to

predict the search performance.

We implement the framework and conduct evaluation on two representative ANN datasets.

Experimental results show that our model makes similar evaluations of heuristics across datasets,

and can make reasonable predictions for per-query search performance. Based on the prediction

results, we give implications on selecting heuristics that build a high-quality graph. Future work

can be built on top of our framework to enhance the reliability and accuracy of ANN searches,

facilitating faster and more precise data retrieval in large-scale applications.

The major contributions of this thesis are as follows.

• We propose aML-based, systematic modeling method for evaluating the efficiency and predicting

the performance of graph-based ANN indexing methods.

• We propose a data generation and analysis method for ANN indexing, by building an unified

performance characterization framework and a feature extraction pipeline.

• We conduct training on various datasets, and offer insights into how graph properties influence

ANN search performance, guiding future indexing designs with high quality graphs.

10



Chapter 2

Background

We first introduce Vector Database and Approximate Nearest Neighbor (ANN) search in Section 2.1.

We then discuss existing ANN indexing methods in Section 2.2, and the ANN search algorithms in

Section 2.3. Finally we describe existing efforts on using machine learning techniques to improve

ANN performance in Section 2.4, which inspire our work.

2.1 Vector Database and ANN Search

Vector databases [19], [20] have emerged as the computational engines enabling effective interac-

tion with vector embeddings in applications. This development follows the exponential rise of

vector embeddings in fields such as NLP (Natural Language Processing), computer vision, and

other AI applications. As a result, companies have all developed their own vector databases to

manage the vast amounts of data they generate and collect, for their applications in knowledge

search, recommendation systems, model serving, etc. By mapping user interests and content

properties into high-dimensional vectors, these systems can find the nearest neighbors to a user’s

profile vector, and provide personalized content recommendations. For example, Google developed

ScaNN (Scalable Nearest Neighbors) [8] for efficient vector similarity search at scale. Their imple-

mentation focuses on pruning the search space and providing better quantization techniques to

efficiently compress the dimension of vectors. Facebook developed Faiss [7] for efficient similarity
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search and clustering of dense vectors, which is used in their systems for ranking and recommen-

dation purposes. Microsoft has developed DiskANN [9], which takes a graph-based approach, and

is optimized for efficiency when the data is stored on disk. They propose methods for partitioning

the graph, and using product quantization to reduce the memory required. Other examples of

industry vector databases include Milvus [21], LVQ [22], [23], Pinecone [24], Meilisearch [25],

Chroma [26], Weaviate [27], Deeplake [28], Qdrant [29], ElasticSearch [30], Vespa [31], Vald [32],

PgVector [33].

The major operation in vector databases is finding nearest neighbors, i.e., the closest vectors,

to a given query vector. Closeness is typically expressed in terms of a dissimilarity function: the

less similar the objects, the larger the function values. Formally, the nearest-neighbor (NN) search

problem is defined as follows: given a set 𝑆 of points in a space𝑀 and a query point 𝑞 ∈ 𝑀 , find

the closest point in 𝑆 to 𝑞. A direct generalization of this problem is a 𝑘-NN search, where we need

to find the 𝑘 closest points. Exact 𝑘-NN search in vector database is computationally expensive,

as in real-world applications, there could be billions of vectors in the database, each of which in

hundreds of dimensions. Various solutions to the NNS problem have been proposed, including

linear search and space partitioning. Linear search is a naive approach that has a running time of

𝑂 (𝑑𝑁 ), where 𝑁 is the cardinality of 𝑆 and 𝑑 is the dimensionality of 𝑆 . Space-partitioning (e.g., 𝑘-

d tree), however, reduces the complexity to𝑂 (𝑙𝑜𝑔𝑁 ) on average and𝑂 (𝑘𝑁 1−1/𝑘) in the worst case,

by using the branch and bound methodology. Despite its improvement, the informal observation

usually referred to as “the curse of dimensionality” [34] states that there is no general-purpose

exact solution for NNS in high-dimensional Euclidean space using polynomial preprocessing and

polylogarithmic search time.

Because of the high computational cost of exact 𝑘-NN search, in many applications where it

is acceptable to retrieve a “good guess” of the nearest neighbors, approximate nearest-neighbor

(ANN) [10], [11], [34], [35] is often used instead. ANN algorithms do not guarantee to return

the actual nearest neighbor in every case, in return for improved speed or memory savings.

Typical ANN algorithms include locality-sensitive hashing [34], best bin first and balanced box-
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decomposition tree based search. ANN search plays a crucial role in managing and navigating

through large datasets, especially when dealing with high-dimensional vectors. This technique is

vital for efficiently retrieving information that closely matches a query from a massive pool of

data, which is common in various applications such as image search, recommendation systems,

and more.

Although it has been studied for decades, the ANN search problem, especially in high

dimensions, remains a critical challenge and an area of active research. Meanwhile, due to the rise

of deep learning, ANN search have recently become a hot topic in both academia and industry.

For instance, recently there has been a Big-ANN competition [36] and benchmarking effort [37].

There also have been lots of research work in the past decade on characterizing [38]–[41] and

optimizing vector databases [42]–[48] and ANN search [49]–[53] for GPU [15], [54]–[58], storage

[9], [59]–[61], cloud [62], [63], CXL [64], [65] and distribution [66], [67].

With recent advancements in LLMs, vector databases and ANN search are frequently used for

managing embeddings, allowing for functionalities like semantic search and document retrieval.

Vector databases are used to store the embeddings of texts or user queries, which are then used to

perform fast and efficient ANN searches to retrieve the most relevant information or documents,

a process often refered to as Retrieval Augmented Generation (RAG). Models can rapidly find

relevant pieces of information to add to its context during generation, to provide accurate domain-

specific or time-sensitive responses.

2.2 ANN Indexing Methods

The techniques for approximate nearest neighbor search fall into two primary categories: clustering-

based and graph-based indexing [12]. In this paper, we focus on graph-based indexing, which is

a promising approach for high-dimensional data. In the rest of the section, we discuss previous

graph indexing methods in greater detail.
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2.2.1 Clustering-based vs. Graph-based Indexing

Clustering-based indexing [68]–[70] works by grouping nearby data points into the same bucket

within a hierarchical structure. This method is notably efficient in lower-dimensional spaces.

However, its performance tends to decline in higher-dimensional spaces, with decreased recall,

which means that it becomes less likely to retrieve all relevant results. Note that, for clustering-

based indexing, researchers have proposed quantization techniques, effectively reducing the

dimensions of the dataset [22], [23], [71], [72]. The approach is also known as IVF (inverted file),

where the index contains a mapping from cluster centroids to nodes in the cluster.

Graph-based indexing [16]–[18], [73] involves constructing a graph where data points are

nodes, and pairs of nodes can be connected if they are close or meet some other criteria. The

search process traverses this graph, maintaining a buffer of nodes to explore, and keeping the

top𝑀 nodes based on traversal priorities, usually determined by their distance to the query. The

geometry of the points are abstracted as edges in the graph, so this approach is less sensitive to

the dimension of the data.

Other Variants of ANN Search. In real-world applications, we often want to perform ANN

search with extra conditions. ARKGraph [74] builds an index for searches within a specific search

key range, so that the returned results satisfy an additional numerical filter. SeRF [75] proposes

building a segmented graph to solve the range filter problem. LM-DiskANN [60] and SPFresh [76]

propose ways to dynamically update the ANN index, so that nodes can be continuously inserted

or deleted, lowering the required memory.

2.2.2 Existing Graph Indexing Methods

We introduce the diverse graph-construction methods by categorizing them in terms of their

underlying theoretical graphs. The underlying graphs including 𝑘-nearest-neighbor graphs (KNN),

minimum spanning trees (MST), and relative neighborhood graphs (RNG). All of these graphs are

difficult to compute on large datasets, and previous papers present various ways to approximate
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these graphs.

KNN-based methods focus on constructing graphs where edges connect each node to its

𝑘-nearest neighbors. Since constructing an accurate KNN graph can be slow, the NN-descent

algorithm [73] aims to quickly approximate the KNN graph. At each step, each node considers

the neighbors of its current neighbors, to find potential closer matches and update its outgoing

connections to reach those matches.

MST-based methods approximating the minimum spanning tree of the dataset, which is

where all points in the dataset are connected with the minimum possible total edge weight. The

Hierarchical Clustering-Based Graph (HCNNG) [17] is built by partitioning points into smaller

clusters, then computing the MST of these clusters individually. The process is obtained 𝑘 times

with different partitions to achieve a graph with the desired edge density, and properties of MST.

The Dynamic Exploration Graph [14] is built using a very different algorithm, but also aims to

minimize the total edge length of the degree-𝑘 graph. The algorithm incrementally adds nodes

to the graph by connecting it to its closest matches with an undirected edge, and pruning and

shuffling previous matches to minimize the total edge length.

RNG-based methods construct variants of Relative Neighborhood Graphs (RNG), which we

define formally:

The relative neighborhood graph (RNG) is an undirected graph on a set of points, where 𝑢

and 𝑣 are connected, if and only if there does not exist a third point𝑤 that is closer to both points

than they are to each other, i.e.

𝑒 (𝑢, 𝑣) ⇐⇒ max(𝑑 (𝑤,𝑢), 𝑑 (𝑤, 𝑣)) > 𝑑 (𝑢, 𝑣) (∀𝑤 ∈ 𝐺).

Visually, this means nodes 𝑢 and 𝑣 are connected if there are no points darker intersection

area in figure 2.1. The intersection area is referred to as the lune. In the figure, point𝑤 is closer to

𝑢 and 𝑣 (red segments) than they are to each other (blue segment), so 𝑢 and 𝑣 are not connected in

the RNG graph.
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Figure 2.1: An illustration of the lune; points 𝑢 and 𝑣 would not be connected.

Popular graph construction methods that use the lune concept include Navigable Small

World graphs (NSW) [18] and Navigating Spreading-Out Graphs (NSG) [16]. In NSW, nodes are

incrementally added to the graph. A node 𝑣 is connected to its closest matches among the nodes

that have already been added, with the lune restriction, that if there is a two-hop path from 𝑣

to 𝑢 where both segments are shorter, then the connection to 𝑢 is skipped. HNSW (Hierarchical

Navigable Small World) graphs provide a variant where some nodes are added to higher layers,

to provide a global-to-local search, accelerating the initial portion of the search with the longer

skipping steps.

Navigating Spreading-Out Graphs are designed differently, with the goal of having monotone

paths between any two points, so that no backtracking is required during search. However, the

graph building process looks quite similar, where nodes are added incrementally, and they connect

to the closest nodes previously added, unless the new edge would be the longest and therefore

violate the lune condition.

In CAGRA, we first build a KNN graph with 2 or 3 times the desired number of edges using

NN-descent, then prune edges with the most violations of the lune condition, which they refer to

as detourable routes.

2.2.3 Parallelization in Building Graphs

Somework on approximate nearest neighbor search offer ways to parallelize the graph construction

process. While the approximations introduced during parallelization is not the focus of this paper,
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we include them as a future direction to pursue. In our current analysis, small changes in the

graph do not greatly affect search performance, but as we iterate and improve our cost model,

these changes might have a visible effect, and the tradeoff between graph-construction speed and

the resulting search performance is an exciting topic to explore.

ParlayANN [77] parallelizes various incremental graph construction methods, where nodes

used to be inserted sequentially. Instead, it inserts nodes in batch, and performs additional pruning

and adjustments after insertion. CAGRA [15] parallelizes the calculation of detourable routes

and the search process. In both works, the authors emphasize that the approximations from

parallelization have little impact on the search behavior.

2.3 ANN Search Algorithms

In clustering-based ANN search algorithms, a query is first compared to cluster centroids, to find

the nearest or most relevant clusters. Then, these clusters are fully searched, and the closest points

from these clusters are returned.

The general search strategy for graph-based ANN search is best-first search (Algorithm 1).

The search starts with the insertion of one or more starting nodes into the priority queue. As the

search progresses, the algorithm extracts the highest priority node from the queue for expansion,

examining its neighbors and evaluating their distances to the query. These neighbors are then

inserted into the priority queue.

A key parameter in the search process is the query capacity 𝐿, which dictates the maximum

number of nodes held in the priority queue at any time. This parameter directly influences the

breadth and depth of the search, and a larger capacity always gives higher recall. Hence, this

parameter is often varied to meet a required recall.
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Algorithm 1 Best-First Search (BFiS) [13]

1: Input: graph 𝐺 , start 𝑃 , query 𝑄 , query capacity 𝐿

2: Output: Approximate 𝑘 nearest neighbors of 𝑄

3: 𝑆 ← ∅ ⊲ Priority queue, sorted by distance to 𝑄

4: 𝑖 ← 0

5: compute dist(𝑃,𝑄)
6: add 𝑃 to 𝑆

7: while exists unchecked nodes in 𝑆 do
8: 𝑖 ← index of first unchecked in 𝑆

9: mark 𝑣𝑖 as checked

10: for 𝑢 ∈ neighbors of 𝑣𝑖 do
11: if 𝑢 is not visited then
12: mark 𝑢 as visited

13: compute dist(𝑢,𝑄)
14: add 𝑢 to 𝑆 ⊲ 𝑢 is unchecked

15: if 𝑆.size() > 𝐿 then
16: 𝑆.resize(𝐿)
17: return first 𝐾 of 𝑆

2.4 Machine Learning for ANN

Driven by recent deep learning successes across various fields, there have been intensive studies

on applying machine learning techniques to improve ANN indexing and search performance.

This has led to the development of numerous algorithms that outperform conventional methods,

achieving state-of-the-art performance. AdaptNN [78] predicts termination conditions during

runtime, and Tao [79] predicts termination using static features before the execution of a query

search. Neural LSH [80] is a new learned space partitions of ℝ𝑑
, where they employ supervised

classification for graph partitioning, providing an improved clustering method.
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Chapter 3

ANN Analysis Framework

3.1 Framework Overview

While researching previous graph construction methods, we find that graph indices often optimize

for certain heuristics, such as the absence of triangles or shorter edge lengths. There are no

quantitative results on how aspects of the graph might impact the search speed and accuracy,

which makes designing new indices difficult.

Hence, we propose a framework for analyzing ANN search graph indices, shown in Fig. 3.1.

For each graph construction method and hyperparameter, we build a graph index. Then, we

apply the same search algorithm to find the nearest neighbors of a set of queries. The two steps

are decoupled (Section 3.2), which enables us to analyze the impacts of graph topology on the

search performance.

Then, we discuss data collection in Section 3.3. We extract features from the graph indices, and

pool node and edge-level features as inputs to the cost model, according to the search trajectory.

With the data, we train a cost model to predict the per-query search performance (Section 3.4).

We preprocess features to ensure that the learned weights are interpretable, and use these features

to predict the accuracy and computation cost of the search process.
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Figure 3.1: An overview of our proposed framework. Our contributions are labeled in the diagram

with the section number where we discuss them in more details.
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3.2 Decoupling of Graph Construction and Search

We implement and analyze a selection of graph construction methods, covering each theoretical

graph for ANN search. Each resulting graph is saved in the same format, and can be searched the

same way. We focused on the K-nearest neighbor (KNN) graph, a flattened version of Hierarchical

Navigable Small World (HNSW) graph, the Cuda ANNS Graph (CAGRA), and the Hierarchical

Clustering-based Nearest Neighbor Graph (HCNNG) (Section 2.2). We use the datasets SIFT1M

and Deep1M (Section 4.1). For each graph, on each dataset, we build 3 versions with average

degrees of 8, 16 and 32. We obtain 12 graph indices for each dataset.

We chose to reimplement the graph construction methods, so that the construction process

follows a similar format. In our present analysis, it allows us to use our graph indices independent

of the graph-building process. In the future, this also enables us to analyze the impact of heuristics

for the graph construction process.

For each graph index, we adopted the same best first search algorithm (Section 2.3) to ensure

that the differences observed in our experiments could be attributed directly to the graph structure

rather than variations in the search strategy. This way, our search is decoupled from the graph

construction step. In our experiments, we always used a query capacity 𝐿 of 200, to search for the

top 50 neighbors. The query capacity cannot be inferred from the graph structure or features we

collect, so we do not vary the query capacity across trials.

3.3 Data Collection

For the data collection module, we use data from the graph indices (feature extraction) and the

search process (pooling), to prepare inputs to our cost model.

For feature extraction from graphs, we consider features at three levels: node, edge, and

global, each contributing uniquely to the search dynamics.

After collecting the features of the graph indices, for each query, we only pass a subset of the
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node and edge level features to the cost model for that query. The pooling step in data collection

selects features of nodes and edges that were traversed during the search process, since only these

nodes or edges were seen by the search engine at any time, while other nodes and edges cannot

affect the search outcome.

In table 3.1, we summarize the features, including their relation to heuristics used in current

graph construction methods. For example, as edge length increases, we predict that the computa-

tion cost increases and the accuracy decreases, as minimizing edge length is something all graph

indices care about.

Name Level Relation to Graph
Structure

Cost
(pred)

Acc
(pred)

Degree Node MST has hubs + +
Clustering Coefficient Node lower for RNG + −
Centrality Node higher for MST − ∼
Edge Length Mean Node unsure + −
Edge Length Variance Node higher for HNSW + −
Edge Lengths Edge unsure + −
Average Hop Distance Global small for HNSW − −
SCC Count Global close to 1 unless KNN + −

Table 3.1: Features and their predicted impact on the search process.

Many of the features are difficult to compute exactly for a large graph, so we rely on sampling

methods to get approximations of the features. For example, we randomly sample pairs of points

to compute their pairwise shortest path, which is used to compute the centrality and average hop

distance. Since we are comparing between graph topologies, bias in the approximation will not be

too impactful (for example, the sampled diameter will always be less than the true diameter).

Originally, we also included features that are specific to the query, such as the distance

from each node to the query. However, we discovered that these features can reveal additional

information about the search process, which obscures the prediction results of out cost model. In

particular, if a node is close to a query, it might guess that the accuracy is high. Additionally, this

information is not useful for graph index building, since it doesn’t concern the graph topology.
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Hence, we do not include any features that vary across queries.

3.3.1 Node Features

We look at node-level features such as degree, centrality (the proportion of shortest paths through

it), and clustering coefficient (the proportion of its neighbors that are connected). The degree of

nodes determine the expansion rate of the search, and it is not obvious whether a higher degree

is always better. The average and variance of a node’s outgoing edge lengths offer insights into

the position of the node in the dataset, crucial for determining effective traversal paths during

searches. Features like betweenness centrality are indicative of a node’s centrality in the graph,

suggesting its role in connecting major parts of the graph, thereby guiding more efficient search

paths.

3.3.2 Edge Features

Edge length directly affects the search process as shorter edges typically facilitate faster conver-

gence to the nearest neighbors. The centrality of an edge, measured by how many shortest paths

pass through it, indicates its importance in the structural navigability of the graph. Additionally,

edges that bridge nodes of varying centrality might be crucial for linking disparate parts of the

graph.

3.3.3 Global Graph Features

Features such as the diameter, the number of strongly connected components, and structural

densities including cycles, triangles, and 𝑘-clique density provide a macroscopic view of the graph.

These metrics can reflect the graph’s overall navigability and the complexity of its structure.
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3.4 Model Training

We aim to train a model that predicts the goodness of a node or edge in the search process. To do

so, we first construct a dataset from features to query performance, and train a regression model.

3.4.1 Training Data

For each ANN dataset, we build 12 different graphs (4 methods, 3 degree parameters), and run 100

queries through each graph. For each query, we collect node features of the nodes we visit during

the process, features of the edges contained in the subgraph of visited nodes, and some global

features outlined in the previous subsection.

Our curated dataset contains features for each graph, along with the computation cost and

accuracy outcomes of that particular query on the specified graph. To track the computation cost,

we use the number of distance computations required during the search process.

We split our dataset randomly into train and test sets, and report the prediction results on

the test set.

3.4.2 Model Architecture

The model architecture is shown in Fig. 3.2. It incorporates three linear regression components,

for the three feature levels, detailed in Table 3.1. Each linear layer predicts the search performance

(accuracy and number of distance computations), given only the features of its corresponding

level. The node and edge layers also predict an importance weight for that node or edge.

Then, the node-level predictions are pooled across all visited nodes during search, according

to the (softmaxed) predicted importances. We choose to pool over the visited nodes only, because

changes to other nodes will not affect the search result, so only the node features of visited nodes

should contribute to the final prediction. Similarly, the edge-level predictions are pooled across all

edges within the subgraph of the visited nodes, according to their predicted importances.
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Figure 3.2: Model architecture.

At the end, we take a weighted sum of the node-level predictions, edge-level predictions, and

global predictions, to form the overall prediction.

The weights in the linear layers are trainable, and the final weights for the sum are trainable.

The model design is quite simple, with few nonlinearities. We want to ensure that each node

or edge impacts the prediction independently. With this setup, it is possible to use the node features

linear regression layer to evaluate the impact of a single node on the overall search performance,

and adjust the connections in its neighborhood during the graph construction process.

3.4.3 Data Preprocessing

We first check that our computed features make sense (Fig. 3.3, Fig. 3.4, Fig. 3.5): they are in a

somewhat correct range, and they differ across different graphs.

We see some variance across features and graph degrees, as expected.

Before any experiments, we standardize each feature to have mean of 0 and variance of 1.
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Figure 3.3: Distribution of node features across graphs for SIFT.

Figure 3.4: Distribution of node features across graphs for SIFT.

Then, we check whether the features we collect are correlated (Fig. 3.6). The dimension of

different types of features (node, edge or global) are different. To compute the correlation between

global features and node or edge features, we use the average of the node or edge features. We

cannot easily compute the correlation between node and edge features, so we leave it out. We
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Figure 3.5: Global feature values across graphs for SIFT.

removed some that are clearly correlated. For example, clustering coefficient and 2-hop expansion

rate calculate similar concepts (triangle density). Below, we show the correlation of the features

we use, in the SIFT dataset.
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Figure 3.6: Correlation for SIFT.
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Chapter 4

Experimental Results

In this chapter, we detail the outcomes of our analyses. We first characterize the ANN datasets that

we use for our experiments. In section 4.2, we verify that our regression model has some ability to

predict the search performance, based on our relatively simple features. In section 4.3, we look at

the weights in the model, to understand how each feature impacts the search performance. The

artifact of our evaluation can be found in Chapter 7.

4.1 Characterizing ANN Datasets

The performance and efficiency of graph-based approximate nearest neighbor search methods

can be influenced by the characteristics of the underlying data distributions. In our experiments,

we look at two datasets that are commonly used for ANN benchmarking: SIFT and Deep. They

follow different distributions, and we hope that our cost model is robust enough to be used for

both datasets.

4.1.1 SIFT1M

The Scale-Invariant Feature Transform (SIFT) dataset [81] consists of high-dimensional vectors

derived from real-world images. These vectors represent distinct image features that are invariant
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to image scale, rotation, and lighting changes. The SIFT dataset is widely used in computer vision

and image retrieval tasks. SIFT1M is a subset of the full dataset.

Figure 4.1: Distribution of the SIFT dataset on the first 5 dimensions. There

is sometimes a small bump in distribution around 120.

4.1.2 Deep1M

The Deep dataset consists of image embeddings produced as the outputs from the last fully-

connected layer of the GoogLeNet model [82]. Deep1M is a subset of the full dataset.

Figure 4.2: Distribution of the Deep1M dataset on the first 5 dimensions.

We see that the two datasets follow different distributions.

4.1.3 Distribution of Queries

In most datasets, the training data (on which the graph is built) and the test data (the query points)

follow the same distribution.

However, real-world scenarios often challenge this assumption with the introduction of

queries that are out-of-distribution (OOD). OOD queries are those that significantly deviate from

30



the distribution characteristics of the training set. Previous works have shown that OOD queries

greatly affect the performance of the search algorithm.

In particular, they note that graph methods are more suited than clustering methods for OOD

tasks. Clustering methods partition the data space into regions, and search in the most promising

ones. While this approach is efficient for in-distribution queries, it becomes a limitation when the

query falls outside these established regions. Graph-based indices demonstrate some resilience to

OOD queries, However, there are still decreases in performance when the query is far from the

training data.

4.2 Model Prediction Quality

We train our cost model, and plot the predicted computation cost and accuracy against the true

search results in Fig. 4.3. The points are color coded by their graph indexing method, and they are

in different shapes according to their degree.

The accuracy of an ANN search process is usually reported as the mean accuracy across all

queries. To verify that our model reliably predicts this mean accuracy, we aggregate the accuracy

by graph, resulting in 12 data points, and also plot them. These points closely align with the

diagonal. However, to establish this correlation with higher confidence, a larger dataset is required.

First, we make some observations about the computation cost and accuracy across graph

indices. We see that HNSW has a low accuracy, especially at degree 8. This indicates that our

implementation does not match the official description. The recall for an official unflattened

HNSW graph (with potentially a different search method and layer count), with degree 8, is around

40%. The discrepancy could be due to that we flattened the graph. The inaccurate implementation

does not impact the correctness of our analysis, since we will just be using a poorer quality graph

index. We also see that triangular points (degree 32) are concentrated on the top right of the

graphs, indicating that a high degree graph increases distance computation costs, and increases

accuracy, as we would expect.
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Figure 4.3: Accuracy and computation cost prediction on the test set, plotting

predictions against the true cost or accuracy.
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Then, we look at the quality of predictions. We see that while the model seems to predict the

computation cost and accuracy to some extent (points lie close to the diagonal), it struggles to

differentiate between queries. For the same graph index (same color), the model’s predictions are

quite similar (approximately in the same row).

It is likely that with more layers in the network or with higher order features, we can make

much better predictions. However, for interpretability, we keep the simpler features to ensure

that our model can in fact capture how the graph features and construction heuristics impact the

search performance, without overfitting to more complicated features.

4.3 Impact of Features on Predictions

We visualize the impact of each feature on the prediction in Fig. 4.4, according to the corresponding

weights in the model. We create a combined plot that includes node features, edge features, and

overall graph features, where the different feature levels are weighed by the parameters of the

final layer of the model.

Let us interpret the result. First, note that the parameter weights for both datasets are visually

quite similar. The two models are trained independently, so the similarity shows that the model is

stable across different data distributions, and can be applied to graphs built for new datasets.

Then, we look at the predicted impacts of each feature. Note that the two bars have opposite

desirable directions: we would like to reduce the number of computations (blue bar) and increase

the accuracy (orange bar).

Features where the two bars are in the same direction provide some tradeoff; features where

the bars are in opposite directions show that the heuristic can be tuned in some direction.

If we increase the degree of the graph (entry 1), we expand to more nodes at a time, so

we are less likely to miss certain regions (higher accuracy), but each expansion requires more

computations. This aligns with what we observe from the results plot, and our expectations.

If we increase the centrality of nodes or edges (entries 3 or 6), we observe another tradeoff. As
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Figure 4.4: Impact of all features.

more nodes or edges among the selected subgraph lie on many shortest paths, the model predicts

lower computation costs, and lower accuracy. This could be because sparser graphs tend to have

nodes with high centrality, and lower degree leads to lower computation cost and accuracy.

If we decrease the edge length (entries 4 and 7), we get both better accuracy and smaller

computation costs. Having short edge lengths is crucial in all graph indices, as they effectively

translate some metric space distance to a graph hop distance. If the edge lengths are short, then the

two metrics are more aligned. We would like to note, however, that since we are only comparing

against other existing ANN graph indices, our samples don’t include graphs with very long edge

lengths, so this result might not generalize to more random graph-building methods.

If we decrease the clustering coefficient (triangle density) around a node, we see a higher
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computation cost, and a higher accuracy. In RNG graphs, it is claimed that the third edge of a

triangle can be omitted, so more nodes can be searched over the same number of expansions,

allowing the search algorithm to find the nearest neighbors in the same number of hops. Since we

count the distance computations, encountering more nodes will still increase the computation cost,

but this result suggests that we should include more realistic metrics beyond distance computation

costs. In particular, the distance to a batch of neighbors are often computed in parallel, so it would

be useful to predict the number of expansions as well.

For the global features, if the graph has a low average hop distance between connected nodes,

we see an increase in computation costs, and an increase in strongly connected components. This

is largely because average hops is highly anti-correlated with degree.

Finally, if the graph has more strongly connected components (so it’s more disconnected),

the accuracy decreases, and the computation cost decreases as there is less space to explore.

To summarize, the only clear heuristic we corroborate is that graphs should have shorter edge

lengths. For other features, we would want to collect data across more graphs to make generalized

statements about our result.

4.4 Single Node and Edge Predictions

We check that the predictions for individual nodes and edges vary, so that they can be used to

prune or add edges to a graph. We compute the prediction for each node or edge, weighted by the

parameters in the final layer.

For the nodes, we see in Fig. 4.5 that the some nodes predict unusually high computation

costs or unusually low accuracies. The nodes also vary in importance, although only by a few

times due to regularization in the model.

Similarly, for the edges, we see in Fig. 4.6 that the model predicts varying results. We notice

that the distributions are more regular, which could indicate that there are fewer extremely good

or bad edges, or that the model does not distinguish between edges too well.
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Figure 4.5: The distribution of the predictions for a single node in the

SIFT dataset, including the computation cost, accuracy and importance

predictions.

Figure 4.6: The distribution of the predictions for a single edge in the

SIFT dataset, including the computation cost, accuracy and importance

predictions.
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Chapter 5

Future Work

5.1 Incorporating Deep Models

We would like to enhance our model’s capabilities, by incorporating deeper models. We would

like to integrate higher order features that capture more complex patterns of the graph topology.

To support the newly added features without overfitting, we would like to build more graph

indices. We consider adding indices like the dynamic exploration graph (DEG) or the navigating

spreading-out graph (NSG). We consider making modifications to existing indices, such as skipping

the pruning step of HNSWor CAGRA, to obtain alternative versions of the indices. We also consider

building graphs by pruning a random graph using our existing model.

For modifications on our model architecture, we propose expanding the network to include

multiple layers. This can allow the model to construct more abstract representations using the

current local features and heuristics. Additionally, we would like to employ trainable graph

convolution layers that can dynamically learn and extract relevant node-level, edge-level and

graph-level features from the data. The outputs of the graph convolution layers captures more

complex local features that are impactful for the graph quality.

By integrating theses features, we hope to improve the accuracy of the cost model. While we

sacrifice some interpretability, the model can still be used directly to evaluate and improve graph
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indices.

5.2 Utilizing the Model for Benchmarking

Our analysis framework offers a way to predict the performance of newly proposed heuristics,

using data from existing indices.

Currently, we train our model on two datasets, and check that the parameters are consistent

for the two cases. This consistency is a positive indicator of the model’s robustness and its ability

to generalize across similar distributions.

In the future, we would like to apply our model more confidently to more use cases, extending

to out of distribution queries, new data distributions and new heuristics. We aim to generate

a broader range of plausible graph indices to enhance the model’s robustness. This can allow

future researchers to identify potential limitations and optimize their strategies in earlier stages

of development.

5.3 Improving Existing Graph Indices

We would like to use the cost model to assist the construction of better graph indices. Our model

predicts the cost and accuracy of each node separately. Then, given some graph index, we can

evaluate the contributions of each node and edge in the index. We can add edges that improve

local nodes or have high performance predictions, and remove edges that don’t. If we use GCN

features, then it is easier to apply the model for edge pruning, since all the features are locally

computable.
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Chapter 6

Conclusion

We demonstrated that certain graph structural properties significantly influence the efficiency of

ANN searches. The regression model used in the study offers predictive insights into how specific

node and edge features affect search outcomes, which can be used in the future for edge pruning.

The findings suggest that certain graph features, like edge lengths and node centrality, have a

critical impact on reducing computational costs and improving accuracy, while other features

offer a tradeoff between computation cost and accuracy. These results pave the way for more

quantitative analyses of the impact of graph structure on the search performance.

In the future, we would like to apply the current model to improve the graph construction

process. We would prune existing graphs under the guidance of the cost models. Additionally,

we would like to improve the capacity of the model. It will be interesting to incorporate more

diverse features from a graph convolution layers. The results might be harder to interpret, but will

nontheless be applicable during the graph construction process. We would also like to incorporate

features that arise from parallelizing incremental graph building processes, to better understand

the tradeoffs made.
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Chapter 7

Artifact

Abstract

This artifact appendix helps the readers reproduce the main evaluation results of this project.

Contents

The details of the contained code and how to run graph indexing methods are described at

https://github.com/chenxuhao/Big-ANN/blob/main/README.md.

The details of data processing and model training are described at

https://github.com/storyscene/ann-local-analysis-code/blob/main/README.md

Hosting

The source code of this artifact can be found at

https://github.com/chenxuhao/Big-ANN.

Requirements

Software dependencies
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This artifact requires CUDA 11.8.0 and GCC 11.2.0 or greater.
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