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ABSTRACT
To address the high energy consumption issue of SRAM on GPUs,
emerging Spin-Transfer Torque (STT-RAM) memory technology
has been intensively studied to build GPU register files for bet-
ter energy-efficiency, thanks to its benefits of low leakage power,
high density, and good scalability. However, STT-RAM suffers
from a reliability issue, read disturbance, which stems from the
fact that the voltage difference between read current and write cur-
rent becomes smaller as technology scales. The read disturbance
leads to high error rates for read operations, which cannot be effec-
tively protected by SECDEC ECC on large-capacity register files
of GPUs.

Prior schemes (e.g. read-restore) to mitigate the read distur-
bance usually incur either non-trivial performance loss or exces-
sive energy overhead, thus not applicable for the GPU register file
design which aims to achieve both high performance and energy-
efficiency. To combat the read disturbance on GPU register files,
we propose a novel software-hardware co-designed solution, i.e.
Red-Shield, which consists of three optimizations to overcome lim-
itations of the existing solutions. First, we identify dead reads at
compiling stage and augment instructions to avoid unnecessary re-
stores. Second, we employ a small read buffer to accommodate
register reads with high access locality to further reduce restores.
Third, we propose an adaptive restore mechanism to selectively
pick the suitable restore scheme, according to the busy status of
corresponding register banks. Experimental results show that our
proposed design can effectively mitigate the performance loss and
energy overhead caused by restore operations, while still maintain-
ing the reliability of reads.
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1. INTRODUCTION
General-purpose graphics processing units (GPGPUs) have been

widely adopted for high performance computing during the last
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decade, owing to its high throughput and energy-efficiency [14].
Its single instruction multiple thread (SIMT) architecture enables
thousands of threads running concurrently to hide long latency of
memory operations and hence achieve high throughput. To main-
tain hardware contexts of a huge number of threads, GPGPUs usu-
ally employ a large-capacity register file for seamlessly context
switching. Unfortunately, large-capacity register files also consume
a large portion of power that usually accounts for 15-20% of to-
tal power in modern GPUs [7], as the register files are currently
built with SRAM technology that has high leakage power in sub-
micron technology nodes. To combat the high energy consumption
of SRAM, there have been extensive studies on replacing SRAM
with emerging STT-RAM to build energy-efficient register files of
GPUs, due to its benefits of low leakage power, high density, and
good scalability [6, 8, 9].

However, read disturbance issue has become a major de-
sign challenge for STT-RAM based on-chip memory [16, 17] re-
cently. The read disturbance lies in the decreasing difference be-
tween write current and read current that are applied to read/write
STT-RAM cells. Due to performance concerns, GPU register files
usually employ simple ECC protections against SRAM errors [11],
however it is not sufficient to shield the high error rate caused by the
read disturbance issue [17]. Therefore, how to cope with the read
disturbance issue is a key concern that decides whether the emerg-
ing STT-RAM can be employed to build energy-efficient register
files on GPUs, and it has not been addressed well by prior works.

Restoring data after each read can be a simple yet effective so-
lution to suppress the read disturbance on GPU register files [16,
17]. However, this restore operations lead to unaccepted perfor-
mance loss and energy overhead. Consequently, it is imperative to
judiciously tackle the read disturbance for STT-RAM based regis-
ter file while preserving the high throughput and energy-efficiency
of GPUs. To this end, we propose a novel software-hardware co-
design, namely Red-shield (Read Disturbance Shield), to alleviate
the performance loss and extra energy consumption incurred by the
read disturbance issue on GPUs. In summary, we make the follow-
ing contributions in this work.

• We devise a compiler assisted dead read identification scheme
to identify dead reads that do not need restores, and remove
unnecessary restore operations related to these reads.

• Since successive reads to the same register lead to temporal
locality, we employ a small SRAM read buffer to accommo-
date the reads with high locality.

• We propose an adaptive restore mechanism to selectively pick
the optimal restore scheme, according to the status of register
banks.



Table 1: Read Disturbance Error Rate
Tech(nm) 45 32 22 15 11

BER 1.38E-8 3.38E-7 3.07E-6 2.16E-5 1.2E-4
LER 1.42E-5 3.50E-4 3.17E-3 2.21E-2 1.17E-1

LER SECDEC 1.02-10 6.12E-8 5.04E-6 2.46E-4 7.11E-3

2. BACKGROUND AND MOTIVATION
STT-MRAM (Spin-Transfer Torque Magnetic RAM) is an

emerging nonvolatile memory technology, which is deemed
as one of promising alternatives to SRAM to implement
onchip caches. As shown in Figure 1(a), a STT-MRAM
cell adopts one MTJ (Magnetic Tunnel Junctions) to store
data [6]. Figure 1(b) shows one example of MTJ, which
consists of two ferromagnetic layers separated by an oxide
barrier layer (MgO). The magnetization direction of one fer-
romagnetic layer is fixed (reference layer) while the other
(free layer) can be changed by injecting a current. When
the magnetic fields of two layers are parallel, the MTJ re-
sistance is low representing a logical ‘0’; when the magnetic
fields are anti-parallel, the MTJ resistance is high indicating
a logical ‘1’.
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Figure 1: STT-MRAM cell and array structure.

A typical STT-RAM cell array is shown in Figure 1(c).
An NMOS connected to word line (WL) is used to select
a row of cells. To read and write cell, a voltage is applied
between bit line (BL) and source line (SL).

• To write bit ‘1’, a positive voltage is applied between
SL and BL, creating a current flow from SL to BL. To
write bit ‘0’, a negative voltage is applied to create a
current flow in the opposite direction [12].

• To read a cell, a small voltage is applied between SL
and BL [5]. The amplitude of current flowing through
the cell depends on the resistance of MTJ, which is
sensed by a sense amplifier to identify the stored data.
The read operation is similar to the write operation on
STT-MRAM, except that the read current is smaller
than the write current and the duration is shorter [12].

While read can be done by applying current in two
directions, existing designs often choose the direction
of writing ‘0’, which is more reliable [11].

2.1 Destructive Read
STT-MRAM has shown good scalability by shrinking cell

size beyond 22nm [2]. Equation (1) shows that, given a STT-
MRAM cell, its write current scales proportionally with the
MTJ area [2].

Iw = A · (Jc0 +
C

Tαw
) (1)

where Iw is the STT-MRAM write current; A denotes the
MTJ area; Jc0 denotes the critical current density at zero
temperature; Tw denotes the write current duration; C and
α are fitting parameters. Since the MTJ area shrinks ex-
ponentially with decreasing feature sizes, the STT-MRAM
write current reduces fast — halving feature size results in
25% MTJ area and 75% write current reduction.

STT-MRAM read operation is similar to write operation,
except that the voltage is smaller than that of write [5].

At 130nm, the read current is much smaller than the write
current and thus reads are reliable. However, scaling read
current is challenging as it is very difficult to build STT-
MRAM sense amplifiers that can sense the correct data us-
ing below 20µA current [28]. Figure 2.1 compares the read
and write currents at different technology nodes. From the
figure, the read current stays about the same in deep sub-
micron regime. At 32nm node, the read and write currents
are so close such that some reads may disturb (i.e., write)
their being-read cells [23]. This is referred to as read distur-
bance in STT-MRAM.
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Figure 2: The scaling of read and write currents [23].

The read disturbance can modeled [22] with Equation (2).

P = 1− exp{− t
τ
exp[−∆0(1− I

Ic0
)]} (2)

where P is the read disturbance rate; I denotes the read cur-
rent; t denotes the read pulse width; τ denotes the inverse of
the attempt frequency; ∆0 denotes the magnetic memoriz-
ing energy without any current and magnetic field; and Ic0
denotes the critical switching current at 0K. We choose t, ∆
and Ic0 by following the widely adopted STT-MRAM model
in [22], a model that has been validated against commodity
SST-MRAM products. To compute the disturbance rates at
different technology nodes, we adopt the STT-MRAM scal-
ing model in [2], and model the σ of process variation as
10% [15].

tech(nm) 45 32 22 15 11
BER 1.38E-8 3.38E-7 3.07E-6 2.16E-5 1.2E-4
LER 7.05E-6 1.72E-4 1.57E-3 1.1E-2 6E-2

LER ECC 6.98E-6 1.61E-4 1.54E-3 1.01E-2 5.8E-2

Table 1: The read disturbance rate.

Table 1 summarizes BER (the raw bit error rate), LER
(the raw line error rate for a 64B cacheline), and LER with
ECC (the line error rate after adopting a 5EC6ED BCH code
that can detect 6 errors and correct 5 errors) at different
technology nodes. From the table, the LER with ECC at
32nm node is 1.6E-4, which is much larger than 2.5E-11, the
acceptable error rate of DRAM [20]; the LER with ECC at
15nm node is larger than 1E-3, the acceptable error rate for
onchip caches [25]. Given that read disturbance is becoming
severe, a recent chip demonstration [23] adopts restore-after-
read approach to eliminate read disturbance. Restore-after-
read was also studied in the research community [21].

Unfortunately, restore-after-read introduces large write en-
ergy overhead. Figure 3 categorizes the energy consumption
when adopting restore-after-read on STT-MRAM based L2
caches. The experimental settings can be found in Section 4.
On average, restore consumes 68% more dynamic energy,

Figure 1: The scaling of read and write currents [17]

To the best of our knowledge, this is the first work to address
the read disturbance issue for large-scale STT-RAM based register
files on GPUs.

2. MOTIVATION
A STT-RAM read operation have the same operating mechanism

as a write operation but with smaller voltage. Fig. 1 illustrates the
current amplitude comparison between write current and read cur-
rent at different technology nodes.

The decreasing difference between read current and write cur-
rent leads to read operations with a high error rate. Therefore, the
read disturbance has become a major design concern for STT-RAM
based register files. We use the model from [17] to calcuate the read
disturbance error rate. The 1024-bit register entry is evaluated as a
whole block. Due to performance concerns, GPUs usually employ
SECDEC ECC to protect register files [12]. The modeled error rate
is shown in Table 1. The BER denotes the raw bit error rate, the
LER denotes the line error rate, and the LER SECDEC denotes the
line error rate after adopting SECDEC ECC. We can see that LER
SECDEC is so high that it cannot guarantee the reliability of read-
ing a register entry. For instance, the LER SECDEC at 22mm is
about 5.04E-6, which is much greater than 2.5E-11, the acceptable
error rate of DRAM [17, 13].

Additionally, the state-of-the-art design [17] that aims to sup-
press the read disturbance issue is not applicable to GPU register
file design, because it is specifically designed for STT-RAM based
LLC (L2 cache) whose features are quite different from those of the
register file. It requires help information from the upper-level mem-
ory hierarchy (L1 cache), and however there is no such upper-level
layer above register files on GPUs. Therefore, it is necessary to
devise effective mechanisms to obviate the read disturbance issue
on STT-RAM based GPU register files while not incurring much
performance and energy overhead.

3. RED-SHIELD DESIGN
In this section, we present our proposed design, Red-shield, which

incorporates several software and hardware optimizations to ad-
dress the read disturbance issue of STT-RAM based register files.

3.1 Dead Read Identification
To understand the characteristic of accessed register values on

GPUs, we conduct program profiling on different benchmarks. The
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Figure 2: Register read access count distribution. It shows the
number of read accesses to registers.

result is shown in Fig. 2. Most of these benchmarks have similar
distributions. On average, nearly 49.3% of the generated register
values are referenced (read) only once, while nearly 27.9% and
11.6% of them are referenced twice and three times, respectively.
Those are referenced more than threes times only constitute 0.09%
of total references. A similar result has been observed in previous
work [5]. In fact, it implies that we do not need to restore those
register values that will not be re-referenced in the future.

Furthermore, for a register value that will be re-referenced sev-
eral times, the last reference also does not need to be restored, since
there is no more read after the last reference. For instance, if we
know the register value A will be referenced three times in total
after it is generated, the 3rd read operation on A does not need a
restore operation. Here, we refer to the last read operation as the
dead read, since the register value is not useful anymore after the
last read operation. Apparently, the only read operation to the reg-
ister value that has only one reference is also a dead read.

If we can identify these dead reads before run-time, then the un-
necessary restore operations to these dead reads can be avoided and
both performance and energy-efficiency can be improved. To this
end, we propose a dead read identification scheme that can effec-
tively recognize dead reads at the compiling stage. The standard
register analysis algorithm [1] is employed to analyze register live-
ness coverage.

3.2 Read Buffer Promotion
Although the dead read identification scheme can effectively re-

duce the number of unnecessary restore operations, for register val-
ues that have multiple references, it is still necessary to restore the
data after each read operation (except for the last one). An example
of the register liveness analysis result of backprop is shown in
Fig. 3. ’R’ denotes a register read; ’W’ denotes a register write;
’L’ indicates a register is alive. For instance, r2 is referenced three
times (line 2,4,8) in this snippet code. Though the last read opera-
tion can be identified as a dead read, there is still a need to restore
the first two read operations after reading.

For the register values that have many references (e.g. more than
3 times), if the reference count information is available, we can
devise smart schemes to leverage this temporal locality. To further
reduce the number of restore operations, we propose a read buffer
promotion scheme to make full use of this observed high temporal
locality. To be specific, we build a reference tracking algorithm
by leveraging the register liveness analysis. Based on the liveness
information, this algorithm collects the reference count for each
read operand of each instruction. The reference count for a specific
register is re-collected only if the corresponding operand is dead or
written. This reference count is also encoded into instructions. We



register number-> 0 1 2 3 4 5 6
1 cvt.u32.u16 $r2, $r0.hi; R L W L L
2 mul.half.lo.u16 $r5,$r3.lo,$r2.hi; L L R R L W
3 mul.half.lo.u16 $r6,$r4.lo,$r1.hi; L R L L R L W
4 mad.wide.u16 $r5,$r3.hi,$r2.lo,$r5; L L R R L W L
5 mad.wide.u16 $r6,$r4.hi,$r1.lo,$r6; L R L L R L W
6 shl.u32 $r5,$r5,0x00000010; L L L L L W L
7 shl.u32 $r6,$r6,0x00000010; L L L L L L W
8 mad.wide.u16 $r3,$r3.lo,$r2.lo,$r5; L L R W L R L

Figure 3: A snippet of the PTX source code for the backprop
benchmark

then deploy a small SRAM read buffer to store these register values
with high temporal locality (e.g. reference count > 3).

3.3 Adaptive Restore Design
A STT-RAM read operation is similar to a write operation ex-

cept that the read voltage is smaller than write voltage. To restore
a data value in STT-RAM cells in an efficient way, people propose
the selective restore (SR) [17] that involves two read operations and
one write operation. After first read operation, SR requires another
read that employs a current with an opposite direction compared to
the first read. This second read operation aims to identify which
specific cells have been disturbed. Then a successive write opera-
tion can write only the cells that have been destructed at the first
read. The SR scheme is shown in Fig. 4(a). The SR can effectively
reduce the number of restored data bits, and therefore save energy
consumption caused by unnecessary restores. However, since SR
requires extra operation and causes non-trivial performance over-
head, it can not be naively applied to the STT-RAM based register
file design on which performance is more critical.

On the other hand, the direct restore (DR) [16] can be also em-
ployed in our STT-RAM register file design. The idea is to skip the
second read operation and restore all the "1"s, regardless whether
each of these "1"s is disturbed or not. Thus we can save the time
for performing one read operation for each restore. The downside
of this scheme is that it might write the "1"s that are not disturbed
and might consume unnecessary energy. However, this downside
is not a problem because of two reasons: 1) Our previous dead
read identification and read buffer promotion schemes can effec-
tively reduce the number of restores. Thus, the number of required
direct restores are relatively smaller compared to the baseline that
employs SR scheme. 2) as technology scales, the read current and
write current are getting closer, and therefore the direct restore (un-
der the inversion optimization) only consumes a reasonable amount
of energy close to the second read operation in the SR scheme.

Furthermore, we introduce an adaptive restore scheme that com-
bines the benefits of the selective restore and the direct restore to-
gether, and can selectively choose to use SR or DR, according to
the serving state of register banks. To be specific, the operand col-
lector only performs DR when there is a bank conflict, since in this
situation the latency of read operations has a dominant impact on
performance; If there is no bank conflict, SR is preferred to mini-
mize the energy consumption of restore operations.

4. EXPERIMENTAL EVLUATION
In this section, we present the simulation configuration, and eval-

uate our proposed design in terms of performance and energy. Then
we give a brief estimation on the hardware area.

4.1 Simulation Configuration
We use a cycle accurate GPGPU simulator, GPGPU-Sim v3.2 [2],
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Figure 4: Comparison between the previous restore operation
and our fast-restore operation

to model the detailed GPU architecture. We augment the simulator
with the STT-RAM hybrid register file, with respect to the circuit
level parameters of both SRAM and STT-RAM. Our baseline GPU
is configured as NVIDIA Fermi GTX480. We modify the PTX
parser to perform dead read identification.

We select 18 representative benchmarks from Rodina [3], Par-
boil [15], Mars [4] and NVIDIA CUDA SDK [10] benchmark suites
to evaluate our proposed design. These benchmarks cover a wide
range of applications with various characteristics.

We compare different configurations as follows.
• base: the baseline register file built with SRAM.
• STT: the register file design built with STT-RAM.
• WB: the STT-RAM based register file with a SRAM write

buffer, configured as in previous work [9]. Since there is no
read disturbance protection in this scheme, the line error rate
is so high that it is not a feasible for GPUs.

• RD: the STT-RAM based register file design with the selec-
tive restore scheme [17].

• CO: Configured similar with RD, but with the dead read
identification technique.

• CORB: Configured similar with CO, but with the read buffer
promotion design.

• CORBAR: Configured similar with CORB, but with the adap-
tive restore scheme.

4.2 Performance Evaluation
Fig. 5 shows the GPU throughput under different configurations,

all normalized to the baseline. It is clear to see that employing
the selective restore scheme (RD) to suppress read disturbance in-
curs unacceptable performance loss, achieving only 83.4% of the
SRAM baseline performance on average. This is because longer
read operations (plus restore time) significantly increases the prob-
ability of stalling pipelines. Fortunately, our proposed dead read
identification scheme (CO) can effectively improve throughput and
achieve 90.6% of the baseline performance, due to the capability
of avoiding unnecessary restore operations. For some applications,
such as BAC, NEU and MON, CO can even alleviate the perfor-
mance loss to achieve 96.26% of the baseline performance. More-
over, CORB further improves performance to 91.9% of the baseline
on average, due to the capability of accommodating read request
with multiple accesses. Some benchmarks like LAV, LPS and LUD
can significantly benefit from the high temporal locality. Finally,
CORBAR achieves 93.1% of the baseline performance on average,
since it can adaptively choose when to use DR or SR according to
whether the corresponding bank is busy or not. This adaptive fea-
ture is especially helpful for benchmarks like LPS, SRA and PAT,
which have higher number of bank conflicts.

5. CONCLUSION
STT-RAM has been explored as a promising alternative for SRAM
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Figure 5: GPU throughput comparison between different configurations

to build the large-capacity register file on GPUs due to the advan-
tage of high energy-efficiency. However, the read disturbance issue
of STT-RAM imposes great challenges for register file design as
technology further scales. To address the read disturbance issue,
we present a novel design, Red-shield. It employs complier opti-
mization to filter out short-lifetime reads so as to mitigate the per-
formance and energy overhead incurred by the read-restore opera-
tions. Coupled with the read buffer promotion design as well as the
optimized read-restore scheme, Red-shield can effectively alleviate
pipeline stalls caused by read disturbance and improve the energy-
efficiency. In total, our design can promote STT-RAM based GPU
register files to become a feasible and effective solution for future
GPU architectures.
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