
39

Shielding STT-RAM Based Register files on GPUs Against Read
Disturbance

Hang Zhang, Key State Laboratory of High Performance Computing, College of Computer, National
Univeristy of Defense Technology, China
Xuhao Chen, College of Computer, National Univeristy of Defense Technology, China
Nong Xiao, Key State Laboratory of High Performance Computing, College of Computer, National
Univeristy of Defense Technology & School of Data and Computer Science, Sun Yat-sen University, China
Lei Wang, Fang Liu, Wei Chen, College of Computer, National Univeristy of Defense Technology,
China
Zhiguang Chen, Key State Laboratory of High Performance Computing, College of Computer, National
Univeristy of Defense Technology, China

To address the high energy consumption issue of SRAM on GPUs, emerging Spin-Transfer Torque (STT-
RAM) memory technology has been intensively studied to build GPU register files for better energy-
efficiency, thanks to its benefits of low leakage power, high density, and good scalability. However, STT-RAM
suffers from the read disturbance issue, which stems from the fact that the voltage difference between read
current and write current becomes smaller as technology scales. The read disturbance leads to high error
rates for read operations, which cannot be effectively protected by the SEC-DED ECC on large-capacity
register files of GPUs.

Prior schemes (e.g. read-restore) to mitigate the read disturbance usually incur either non-trivial perfor-
mance loss or excessive energy overhead, thus not applicable for the GPU register file design which aims to
achieve both high performance and energy-efficiency. To combat the read disturbance, we propose a novel
software-hardware co-designed solution, i.e. Red-Shield, which consists of three optimizations to overcome
the limitations of the existing solutions. First, we identify dead reads at compiling stage and augment in-
structions to avoid unnecessary restores. Second, we employ a small read buffer to accommodate register
reads with high access locality to further reduce restores. Third, we propose an adaptive restore mecha-
nism to selectively pick the suitable restore scheme, according to the busy status of corresponding register
banks. Experimental results show that our proposed design can effectively mitigate the performance loss
and energy overhead caused by restore operations, while still maintaining the reliability of reads.

CCS Concepts: rHardware→ Spintronics and magnetic technologies; Emerging technologies;

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: GPU, STT-RAM, Register File, Read Disturbance

ACM Reference Format:
Hang Zhang, Xuhao Chen, Nong Xiao, Lei Wang, Liu Fang, Wei Chen, Zhiguang Chen. Shielding STT-
RAM Based Register files on GPUs against Read Disturbance. ACM J. Emerg. Technol. Comput. Syst. 10, 5,
Article 39 (March 2016), 17 pages.
DOI: 0000001.0000001

This work is supported by National Natural Science Foundation of China, under grant Nos. 61433019,
U1435217, 61232003, 61502514, 61202121, 61402503, 61402501, 61120106005 and 61303073; National
High Technology Research and Development 863 Program of China, under grant Nos. 2015AA015305; Re-
search Fund for the Doctoral Program of Higher Education of China, under grant Nos. 20114307120013.
Author’s addresses: H. Zhang, X. Chen, N. Xiao, L. Wang, F. Liu, W. Chen, Z. Chen, College of Computer,
National University of Defense Technology, Changsha, Hunan 410073, Changsha, China.
The Corresponding authors are H. Zhang (zhanghanghit@gmail.com) and N. Xiao (xiao-n@vip.sina.com).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2016 Copyright held by the owner/author(s). 1550-4832/2016/03-ART39 $15.00
DOI: 0000001.0000001

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:2 H. Zhang et al.

1. INTRODUCTION
General-purpose graphics processing units (GPGPUs) have been widely used for high
performance computing during the last decade, owing to its high throughput and
energy-efficiency [Schulte et al. 2015]. Its single instruction multiple thread (SIMT)
architecture enables thousands of threads running concurrently to hide long latency
of memory operations and hence achieve high throughput. To maintain hardware con-
texts of a huge number of threads, GPGPUs usually employ a large-capacity register
file for seamlessly context switching. Unfortunately, large-capacity register files also
consume a large portion of power that usually accounts for 15-20% of total power in
modern GPUs [Leng et al. 2013], as the register files are currently built with SRAM
technology that has high leakage power in sub-micron technology nodes.

To combat the high energy consumption of SRAM, there have been extensive stud-
ies on replacing SRAM with emerging STT-RAM to build energy-efficient register files
of GPUs, due to its benefits of low leakage power, high density, and good scalabil-
ity [Goswami et al. 2013; Li et al. 2015; Liu et al. 2015]. However, read disturbance
issue has become a major design challenge for STT-RAM based on-chip memory [Sun
et al. 2012; Wang et al. 2015] recently. The read disturbance lies in the decreasing
difference between write current and read current that are applied to read/write STT-
RAM cells as technology scales. Due to performance concerns, GPU register files usu-
ally employ simple ECC protections against SRAM errors [Palframan et al. 2014], and
it is not sufficient to shield the high error rate caused by the read disturbance issue
for STT-RAM based register file [Wang et al. 2015]. Therefore, how to cope with the
read disturbance issue is a key concern that decides whether the emerging STT-RAM
can be employed to build energy-efficient register files on GPUs, and it has not been
addressed well by prior works.

Restoring data after each read can be a simple yet effective solution to suppress
the read disturbance on GPU register files [Sun et al. 2012; Wang et al. 2015], which
we referred as RD (Restoring Data) scheme. However, these restore operations lead
to unaccepted performance loss. Fig. 1 shows the performance impact on read distur-
bance when RD is employed to combat read disturbance issue. Here, Base represents
a SRAM based register file design as a baseline. WB denotes a STT-RAM register file
design that replaces SRAM with STT-RAM, which is enhanced with a SRAM write
buffer as previous design [Liu et al. 2015]. The read disturbance issue is not handled
with this design, and hence it results in a high error rate. The detailed configurations
are shown in Section 5.

Nearly 27.3% of GPU throughput is reduced under this restore scheme (RD) on av-
erage, which means these restore operations lead to significant performance loss that
is unacceptable for high-throughput-demand GPUs. Besides, these excessive restores
also consume non-trivial dynamic energy. What make things even worse is that the
read disturbance issue will even be aggravated by the shrinking difference between
read current and write current as technology scales. Consequently, it is imperative
to judiciously tackle the read disturbance for STT-RAM based register file while pre-
serving the high throughput and energy-efficiency of GPUs. To this end, we propose a
novel software-hardware co-design, namely Red-shield (Read Disturbance Shield),
to alleviate the performance loss and extra energy consumption incurred by the read
disturbance issue on GPUs. In summary, we make the following contributions in this
work.

— We devise a compiler assisted dead read identification scheme to identify dead reads
that do not need restores, and remove unnecessary restore operations related to
these reads.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

.
G

P
U

 T
h

ro
u

g
h

p
u

t

Base WB RD

Fig. 1. The GPU performance slowdown under read disturbance with the selective restore scheme.

— Since successive reads to the same register lead to temporal locality, we employ a
small SRAM read buffer to accommodate the reads with high locality.

— We propose an adaptive restore mechanism to selectively pick the optimal restore
scheme, according to the status of register banks.

To the best of our knowledge, this is the first work to address the read disturbance
issue for large-scale STT-RAM based register files on GPUs. The structure of this pa-
per is organized as follows: Section 2 introduces the background of GPU register file
architectures and the basics of STT-RAM memory technology. Section 3 demonstrates
the read disturbance issue of STT-RAM based register file as the motivation. Section 4
elaborates the detailed design of our proposed schemes. The experimental evaluation
and analysis is shown in Section 5. We review the related work on STT-RAM based
GPU register file design and the STT-RAM read disturbance issue on Section 6. Then
Section 7 gives the conclusion of our work.

2. BACKGROUND
In this section, we briefly introduce the GPU architecture and its register file structure,
as well as the basics of STT-RAM memory technology.

2.1. GPGPU Architecture and Register Files
Our baseline GPU architecture is similar to NVIDIA Fermi architecture. It is composed
of 16 streaming multiprocessors (SMs), each of which contains a 5-stage pipeline. An
SM consists of 32 single structured CUDA cores. All the CUDA cores inside an SM
share the same instruction fetch and issue logic.

In CUDA programs, a kernel is a grid of parallel thread blocks. Each thread block
can have at most 1,024 threads. A warp which contains 32 threads is the minimum
scheduling unit in GPUs and executes in a lock-step manner. The overview of the
baseline architecture is shown in Fig. 2. Each SM has 32,768 32-bit registers which
constitute a total 128KB register file. To enable simultaneous accesses to the register
file from multiple warps, the register file is divided into 16 banks, each of which has
8KB capacity. Each bank is partitioned into 64 register entries, and each entry has
1024-bit data width. A register entry can be read/written to fulfill access requests of
warps.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:4 H. Zhang et al.

GPGPU

Interconnection Network

SIMT Core Cluster

SIMT
Core

SIMT
Core

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5 Off-chip DRAM

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

Instruction Unit

Scoreboard

Register file

Execution Unit

SIMT Core

Fig. 2. The GPGPU architecture explored in this work.

2.2. STT-RAM Memory Technology
As technology scales into submicron, the leakage power of transistors becomes domi-
nant for total power consumption, which imposes great challenges of building SRAM
based on-chip resources. As a result, researchers start to explore the emerging Emerg-
ing non-volatile memory (NVM) technologies, such as STT-RAM (Spin Transfer Torque
MRAM), PCM (Phase Change Memory) and ReRAM (Resistive Memory), are widely
explored to replace conventional SRAM/DRAM technologies, due to the advantages of
near-zero leakage power, high density, good scalability and non-volatility[Zhou et al.
2009; Xu et al. 2015; Sun et al. 2011]. Compared with PCM and ReRAM, STT-RAM
has a relatively low read/write latency and high endurance (> 1012), and thus is inten-
sively studied as a promising alternative to replace SRAM [Sun et al. 2009; Sun et al.
2011].

STT-RAM cells uses a magnetic tunneling junction (MTJ) structure to store a bit of
data. whose accessibility is controlled by an NMOS access transistor. shown in Fig. 3.
The MTJ is composed of two ferromagnetic layers separated by a dielectric layer (usu-
ally built in MgO). The magnetization of one ferromagnetic layer is fixed (referred as
the reference layer), whereas the magnetization of the other is changeable (referred as
the free layer). The magnetization of the free layer switches to the other direction when
the applied current exceeds the critical threshold by injecting spin polarized electrons.
If the free layer is parallel with the reference layer, the MTJ exhibits low resistance,

Bit Line

Source Line

Word Line

Access Transistor

Free layer

Barrier

Reference Layer

Free layer

Barrier

Reference Layer

(a) 1T1J STT-RAM Cell (b) Low Resistance State (c) High Resistance State

Fig. 3. (a) The 1T1MTJ STT-RAM cell structure. (b) Low resistance state: the magnetization directions of
the free layer and the reference layer are parallel. (c) High resistance state: the magnetization directions of
the free layer and the reference layer are anti-parallel.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:5

which denotes the logic value as ”0”; If the free layer is anti-parallel with the reference
layer, the MTJ exhibits high resistance, which denotes the logic value as ”1”.

Table I illustrates the circuit level parameters comparison between SRAM and STT-
RAM at 32nm technology node for 700MHz clock rate. All these parameters are derived
from NVsim [Dong et al. 2012] and configured similarly as previous work [Li et al.
2015]. It shows that STT-RAM has much lower leakage power consumption but longer
write operation latency and higher write energy consumption than SRAM. The STT-
RAM cell also only has nearly 1/3 feature size of SRAM, which results in denser STT-
RAM memory arrays. Note that the energy consumption of a write operation can be
roughly estimated as the production of write pulse width, current, and supply voltage.
It is expected to decrease as the MTJ size scales down.

3. MOTIVATION
In this section, we review the challenges of the read disturbance issue for STT-RAM
and analyze its impact on STT-RAM based register file design.

3.1. The Read Disturbance Problem
With good scalability, STT-RAM can even reduce the cell size beyond 22nm with the
write current scaling proportionally with MTJ area [Chun et al. 2013]. It can be mod-
eled by Equation 1 [Wang et al. 2015].

Iω = A ∗ (Jc0 +
C

Tαω
) (1)

where Iω is the write current; A denotes the MTJ area; Jc0 denotes the critical current
density at zero temperature; Tω denotes the write current duration; C and α are fitting
parameters.

STT-RAM read operations have the same operating mechanism as write operations
but with smaller voltage. Fig. 4 illustrates the amplitude comparison between write
current and read current at different technology nodes. For larger technology nodes,
e.g. 130nm, the read current is much smaller than the write current, and hence the
reads are reliable. While write current scales well as mentioned, read current cannot
scale and stays as the same at sub-micron regime, because it is hard to build sense
amplifiers that can sense the correct data below 20µA current [Weisheng Zhao et al.
2009]. When read current is close to write current, the read operation may change

Table I. Parameters of SRAM and STT-RAM

Parameter SRAM STT-RAM
Cell Factor (F 2) 146 57.5

Area (mm2) 0.194 0.038
Read latency (cycle) 1 1
Write latency (cycle) 1 4
Read energy (pJ/bit) 0.203 0.239
Write energy (pJ/bit) 0.191 0.300
Leakage power (mW) 248.7 16.2

Table II. Read Disturbance Error Rate

Tech(nm) 45 32 22 15 11
BER 1.38E-8 3.38E-7 3.07E-6 2.16E-5 1.2E-4
LER 1.42E-5 3.50E-4 3.17E-3 2.21E-2 1.17E-1

LER SEC-DED 1.02E-10 6.12E-8 5.04E-6 2.46E-4 7.11E-3

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:6 H. Zhang et al.

2. BACKGROUND AND MOTIVATION
STT-MRAM (Spin-Transfer Torque Magnetic RAM) is an

emerging nonvolatile memory technology, which is deemed
as one of promising alternatives to SRAM to implement
onchip caches. As shown in Figure 1(a), a STT-MRAM
cell adopts one MTJ (Magnetic Tunnel Junctions) to store
data [6]. Figure 1(b) shows one example of MTJ, which
consists of two ferromagnetic layers separated by an oxide
barrier layer (MgO). The magnetization direction of one fer-
romagnetic layer is fixed (reference layer) while the other
(free layer) can be changed by injecting a current. When
the magnetic fields of two layers are parallel, the MTJ re-
sistance is low representing a logical ‘0’; when the magnetic
fields are anti-parallel, the MTJ resistance is high indicating
a logical ‘1’.

MTJ

Bit line

Source line

Access

transistorWord

line

Free

Layer
Fixed

Layer

(a) Cell

���

(b) MTJ

MTJ

WL

SL BL

MTJ

MTJ MTJ

SL BL

WL

(c) Array

Figure 1: STT-MRAM cell and array structure.

A typical STT-RAM cell array is shown in Figure 1(c).
An NMOS connected to word line (WL) is used to select
a row of cells. To read and write cell, a voltage is applied
between bit line (BL) and source line (SL).

• To write bit ‘1’, a positive voltage is applied between
SL and BL, creating a current flow from SL to BL. To
write bit ‘0’, a negative voltage is applied to create a
current flow in the opposite direction [12].

• To read a cell, a small voltage is applied between SL
and BL [5]. The amplitude of current flowing through
the cell depends on the resistance of MTJ, which is
sensed by a sense amplifier to identify the stored data.
The read operation is similar to the write operation on
STT-MRAM, except that the read current is smaller
than the write current and the duration is shorter [12].

While read can be done by applying current in two
directions, existing designs often choose the direction
of writing ‘0’, which is more reliable [11].

2.1 Destructive Read
STT-MRAM has shown good scalability by shrinking cell

size beyond 22nm [2]. Equation (1) shows that, given a STT-
MRAM cell, its write current scales proportionally with the
MTJ area [2].

Iw = A · (Jc0 +
C

Tαw
) (1)

where Iw is the STT-MRAM write current; A denotes the
MTJ area; Jc0 denotes the critical current density at zero
temperature; Tw denotes the write current duration; C and
α are fitting parameters. Since the MTJ area shrinks ex-
ponentially with decreasing feature sizes, the STT-MRAM
write current reduces fast — halving feature size results in
25% MTJ area and 75% write current reduction.

STT-MRAM read operation is similar to write operation,
except that the voltage is smaller than that of write [5].

At 130nm, the read current is much smaller than the write
current and thus reads are reliable. However, scaling read
current is challenging as it is very difficult to build STT-
MRAM sense amplifiers that can sense the correct data us-
ing below 20µA current [28]. Figure 2.1 compares the read
and write currents at different technology nodes. From the
figure, the read current stays about the same in deep sub-
micron regime. At 32nm node, the read and write currents
are so close such that some reads may disturb (i.e., write)
their being-read cells [23]. This is referred to as read distur-
bance in STT-MRAM.

180130 90 65 45 32 22 15

101

102

103

Cu
rr

en
t (

A)
Feature Size (nm)

 write
 read

Figure 2: The scaling of read and write currents [23].

The read disturbance can modeled [22] with Equation (2).

P = 1− exp{− t
τ
exp[−∆0(1− I

Ic0
)]} (2)

where P is the read disturbance rate; I denotes the read cur-
rent; t denotes the read pulse width; τ denotes the inverse of
the attempt frequency; ∆0 denotes the magnetic memoriz-
ing energy without any current and magnetic field; and Ic0
denotes the critical switching current at 0K. We choose t, ∆
and Ic0 by following the widely adopted STT-MRAM model
in [22], a model that has been validated against commodity
SST-MRAM products. To compute the disturbance rates at
different technology nodes, we adopt the STT-MRAM scal-
ing model in [2], and model the σ of process variation as
10% [15].

tech(nm) 45 32 22 15 11
BER 1.38E-8 3.38E-7 3.07E-6 2.16E-5 1.2E-4
LER 7.05E-6 1.72E-4 1.57E-3 1.1E-2 6E-2

LER ECC 6.98E-6 1.61E-4 1.54E-3 1.01E-2 5.8E-2

Table 1: The read disturbance rate.

Table 1 summarizes BER (the raw bit error rate), LER
(the raw line error rate for a 64B cacheline), and LER with
ECC (the line error rate after adopting a 5EC6ED BCH code
that can detect 6 errors and correct 5 errors) at different
technology nodes. From the table, the LER with ECC at
32nm node is 1.6E-4, which is much larger than 2.5E-11, the
acceptable error rate of DRAM [20]; the LER with ECC at
15nm node is larger than 1E-3, the acceptable error rate for
onchip caches [25]. Given that read disturbance is becoming
severe, a recent chip demonstration [23] adopts restore-after-
read approach to eliminate read disturbance. Restore-after-
read was also studied in the research community [21].

Unfortunately, restore-after-read introduces large write en-
ergy overhead. Figure 3 categorizes the energy consumption
when adopting restore-after-read on STT-MRAM based L2
caches. The experimental settings can be found in Section 4.
On average, restore consumes 68% more dynamic energy,

Fig. 4. The scaling of read and write currents [Wang et al. 2015]

the stored value, which is referred as the read disturbance for STT-RAM. We can use
Equation 2 to model the read disturbance [Wang et al. 2015; Smullen et al. 2011].

P = 1− exp{−exp[− t
τ

∆(1− I

Ic0
)]} (2)

where P is the read disturbance rate; I denotes the read current; t denotes the read
pulse width; τ denotes the inverse of the attempt frequency; ∆0 denotes the magnetic
memorizing energy without any current and magnetic field; Ic0 denotes the critical
switching current at 0K.

3.2. Impact of the Read Disturbance
We use the model from [Wang et al. 2015] to calcuate the read disturbance error rate.
The 1024-bit register entry is evaluated as a whole block. Due to performance con-
cerns, GPUs usually employ SEC-DED ECC to protect register files [Rossi et al. 2011].
The modelled error rate for read disturbance on STT-RAM register files is shown in
Table II. The BER denotes the raw bit error rate, the LER denotes the line error rate,
and the LER SEC-DED denotes the line error rate after adopting SEC-DED ECC. We
can see that LER SEC-DED is so high that it cannot guarantee the reliability of read-
ing a register entry even under ECC protection. For instance, the LER SEC-DED at
22mm is about 5.04E-6, which is much greater than 2.5E-11, the acceptable error rate
of DRAM [Wang et al. 2015; Schroeder et al. 2009]. This implies that we cannot rely on
the SEC-DED ECC code to protect STT-RAM based register files on GPUs, when the
read disturbance issue is taken into consideration, because the error rate is so high
that we cannot build reliable STT-RAM register files.

Additionally, the state-of-the-art design [Wang et al. 2015] that aims to suppress
the read disturbance issue is not applicable to GPU register file design, because it
is specifically designed for STT-RAM based LLC (L2 cache) whose features are quite
different from those of the register file, for example, it requires help information from
the upper-level memory hierarchy (L1 cache), and however there is no such upper-
level layer above register files on GPUs. Therefore, it is necessary to devise effective
mechanisms to obviate the read disturbance issue on STT-RAM based GPU register
files while not incurring much performance and energy overhead.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:7

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
reference_1 reference_2 reference_3 reference > 3

Fig. 5. Register read access count distribution. The number of read accesses to registers is shown.

4. RED-SHIELD DESIGN DETAILS
In this section, we present our proposed design, Red-shield, which incorporates sev-
eral software and hardware optimizations to address the read disturbance issue of
STT-RAM based register files on GPUs.

4.1. Dead Read Identification
To understand the characteristic of accessed register values on GPUs, we conduct pro-
filing on different benchmarks, and the result is shown in Fig. 5. The detailed exper-
iment configuration is shown in Section 5. Most of these benchmarks have similar
distributions on how many of the register values are referenced. On average, nearly
49.3% of the generated register values are referenced (read) only once, while nearly
27.9% and 11.6% of them are referenced twice and three times, respectively. Those are
referenced more than threes times only constitute 11.2% of total references. A similar
result has been observed in previous work [Gebhart et al. 2011]. In fact, it implies that
we do not need to restore those register values that will not be re-referenced in the
future.

Furthermore, for a register value that will be re-referenced several times, the last
reference also does not need to be restored, since there is no more read after the last
reference. For instance, if we know the register value A will be referenced three times
in total after it is generated, the 3rd read operation on A does not need a restore
operation. Here, we refer to the last read operation as the dead read, since the register
value is not useful anymore after the last read operation. Apparently, the only read
operation to the register value that has only one reference is also a dead read.

If we can identify these dead reads before run-time, then the unnecessary restore
operations to these dead reads can be avoided and both performance and energy-
efficiency can be improved. To this end, we propose a dead read identification scheme
that can effectively recognize dead reads at the compiling stage. The standard register
analysis algorithm [Appel 1997] is employed to analyze register liveness coverage, and
the pseudo code is shown in Algorithm 1.

Since the PTX specification [NVIDA 2009] only allows four read operands for one
instruction, we add four dead bits into each instruction to represent the liveness of
the four operands. The 4-bits are set according to the register liveness analysis, to
indicate whether the reads of their corresponding operands are dead or not. At run-
time, the dead bits that hold the register liveness information are passed to the register

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:8 H. Zhang et al.

ALGORITHM 1: Register Analysis Algorithm
for each n in CFG do

in[n]=∅, out[n]=∅;
end
repeat

for each n in CFG do
in’[n]=in[n], out’[n]=out[n];
in[n]=use[n] ∪ (out[n] - def[n]);
out[n]=

⋃
s⊂succ[n]

in[s];

end
until in’[n]=in[n] and out’[n]=out[n] for all n;

file (Fig. 8). Based on this information, the register arbitrator who is responsible for
read restoring can make dicision on whether to perform a restore operation or not.
Since the register liveness analysis is a standard technique in modern compilers, the
overhead is mostly the instruction extension and hence is trivial, which is consistent
with the previous work [Jing et al. 2013]. The hardware logic for passing the dead bits
is also negligible.

Our scheme can guarantee the correctness of our proposed scheme. We can make
sure that we do not wrongly skip the necessary restore operation to a read operations
that the read disturbance happens. This correctness of the proposed dead read identi-
fication scheme relies on the correctness of the standard algorithm of register liveness
analysis. That algorithm aims to identify the liveness of registers, and make two log-
ical registers that do not have overlapped liveness share a same physical register, so
as to alleviate the pressure on register capacity. Their scheme can guarantee the cor-
rectness that these two register do not have overlapped liveness indeed. By having the
correct liveness information of a register, we can easily identify the last read operation
to that register as the dead read.

register number -> 0 1 2 3 4 5 6

1 cvt.u32.u16 $r2 , $r0.hi; R L W L L
2 mul.half.lo.u16 $r5 ,$r3.lo,$r2.hi; L L R R L W
3 mul.half.lo.u16 $r6 ,$r4.lo,$r1.hi; L R L L R L W
4 mad.wide.u16 $r5 ,$r3.hi ,$r2.lo,$r5; L L R R L W L
5 mad.wide.u16 $r6 ,$r4.hi ,$r1.lo,$r6; L R L L R L W
6 shl.u32 $r5 ,$r5 ,0 x00000010; L L L L L W L
7 shl.u32 $r6 ,$r6 ,0 x00000010; L L L L L L W
8 mad.wide.u16 $r3 ,$r3.lo ,$r2.lo,$r5; L L R W L R L

Fig. 6. A snippet of the PTX source code for the backprop benchmark

4.2. Read Buffer Promotion
Although the dead read identification scheme can effectively reduce the number of
unnecessary restore operations, for register values that have multiple references, it is
still necessary to restore the data after each read operation (except for the last one).
An example of the register liveness analysis result of backprop is shown in Fig. 6. ’R’
denotes a register read; ’W’ denotes a register write; ’L’ indicates a register is alive. For
instance, r2 is referenced three times (line 2,4,8) in this snippet code. Though the last
read operation can be identified as a dead read, there is still a need to restore the first
two read operations after reading.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:9

For the register values that have many references (e.g. more than 3 times), if the
reference count information is available, we can devise smart schemes to leverage this
temporal locality. To further reduce the number of restore operations, we propose a
read buffer promotion scheme to make full use of this observed high temporal locality.
To be specific, we build a reference tracking algorithm (Algorithm 2) by leveraging the
register liveness analysis. Based on the liveness information, this algorithm collects
the reference count for each read operand of each instruction. The reference count for
a specific register is re-collected only if the corresponding operand is dead or written.
This reference count is also encoded into instructions. We then deploy a small SRAM
read buffer to store these register values with high temporal locality (e.g. reference
count > 3). The hardware details and how the read buffer at maintain in the register
file architecture are shown in Fig. 8.

ALGORITHM 2: Calculate read reference count
Allocate and initialize: queue[max register num];
for i ⊂ setinstructions do

for op ⊂ iread op do
if op.dead == false then

queue[op.register].push(i);
else

ileader = queue[op.register].front();
ileader.ref count[op] = queue[op.register].size();
while queue[op.register].empty()==false do

queue[op.register].pop();
end

end
end

end

4.3. Adaptive Restore Design
A STT-RAM read operation is similar to a write operation except that the read volt-
age is smaller than write voltage. To restore a data value in STT-RAM cells in an
efficient way, researchers have proposed the selective restore (SR) [Wang et al. 2015]
that involves two read operations and one write operation. After first read operation,
SR requires another read that employs a current with an opposite direction compared
to the first read. This second read operation aims to identify which specific cells have
been disturbed. Then a successive write operation can write only the cells that have
been destructed at the first read. The SR scheme is shown in Fig. 7(a). The SR can
effectively reduce the number of restored data bits, and therefore save energy con-
sumption caused by unnecessary restores. However, since SR requires extra operation
and causes non-trivial performance overhead, it can not be naively applied to the STT-
RAM based register file design on which performance is more critical.

On the other hand, the direct restore (DR) [Sun et al. 2012] can be also employed in
our STT-RAM register file design. The idea is to skip the second read operation and
restore all the ”1”s, regardless whether each of these ”1”s is disturbed or not. Thus we
can save the time for performing one read operation for each restore. The downside of
this scheme is that it might write the ”1”s that are not disturbed and might consume
unnecessary energy. However, this downside is not a problem because of two reasons:
1) Our previous dead read identification and read buffer promotion schemes can ef-
fectively reduce the number of restores. Thus, the number of required direct restores

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:10 H. Zhang et al.

0 0 1 0 1 1

0 0 ? 0 ? ?

0 0 1 0 1 10 0 1 1 1 1

0 0 1 0 1 1
b) direct restore

a) selective restore

restore all '1's

read current as write '0'

read current as write '1'

restore disturbed '0'

Fig. 7. Comparison between the previous restore operation and our fast-restore operation

are relatively smaller compared to the baseline that employs SR scheme. 2) as tech-
nology scales, the read current and write current are getting closer, and therefore the
direct restore (under the inversion optimization) only consumes a reasonable amount
of energy close to the second read operation in the SR scheme.

Furthermore, we introduce an adaptive restore scheme that combines the benefits of
the selective restore and the direct restore together, and can selectively choose to use
SR or DR, according to the serving state of register banks. To be specific, the operand
collector only performs DR when there is a bank conflict, since in this situation the
latency of read operations has a dominant impact on performance; If there is no bank
conflict, SR is preferred to minimize the energy consumption of restore operations.

Fig. 8 shows the schematic view of the overall architecture that contains these three
techniques we have proposed. When a read instruction enters the GPU pipeline, it
has already been tagged with the dead read information and the read reference count,
which are generated by the complier as we proposed. When the instruction enters into
the accessing register stage, the arbiter determines which read mode (SR or DR) will
be used to read the STT-RAM register entry. After the data is fetched from the register
file, the arbiter determines whether this data needs to be placed into the read buffer,
according to the reference count information.

5. EXPERIMENTAL EVLUATION
In this section, we present the simulation configuration, and evaluate our proposed
design in terms of performance and energy. Then we give a brief estimation on software
and hardware overheads.

Table III. Simulation Configuration

Parameter Value
Number of SMs 16

Core/Shader/DRAM Frequency 700/1400/924MHz
Register File/SM 128KB
Max Warps/SM 48

Max Threads/SM 1536
Max Thread Blocks/SM 8
Max Registers/Thread 63

Max Threads/Thread Block 1024
L1/Shared Memory 16KB/48KB

Warp Scheduler GTO

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:11

R
o
w

 D
e
c
o

d
e
r

Sense Amplifier
Read

Mode

Register

Bank
STT-RAM Array

Data out

R
o
w

 D
e
c
o

d
e
r

Sense Amplifier
Read

Mode

Register

Bank
STT-RAM Array

Data out

Request

Queue

Write

Buffer

Read

Buffer
Arbitor

R
o
w

 D
e
c
o

d
e
r

Sense Amplifier
Read

Mode

Register

Bank
STT-RAM Array

Data out

address

Fetch

I-Cache

Decoder

SIMT-Stack

I-Buffer

Issue

Operand

Collector

ALU

Mem

Scoreboard

Regsiter File

DR

SR

Dead read information

Read reference count

Fig. 8. The overall architecture of our proposed design

5.1. Simulation Configuration
We use a cycle accurate GPGPU simulator, GPGPU-Sim v3.2 [Bakhoda et al. 2009], to
model the detailed GPU architecture. We augment the simulator with the STT-RAM
hybrid register file, with respect to the circuit level parameters of both SRAM and
STT-RAM. Our baseline GPU is configured as NVIDIA Fermi GTX480. The detailed
configuration is shown in Table III. We modify the PTX parser to perform dead read
identification.

We select 18 representative benchmarks from Rodina [Che et al. 2010], Par-
boil [Stratton et al. 2012], Mars [Fang et al. 2011] and NVIDIA CUDA SDK [NVIDA
2012] benchmark suites to evaluate our proposed design. These benchmarks cover a
wide range of applications with various characteristics, and are shown in Table IV.

We compare different configurations as follows.
— base: the baseline register file built with SRAM.
— STT: the register file design built with STT-RAM.
— WB: the STT-RAM based register file with a SRAM write buffer, configured as in

previous work [Liu et al. 2015]. Since there is no read disturbance protection in this
scheme, the line error rate is so high that it is not a feasible for GPUs.

— RD: the STT-RAM based register file design with the selective restore scheme [Wang
et al. 2015].

— CO: Configured similar with RD, but with the dead read identification technique.
— CORB: Configured similar with CO, but with the read buffer promotion design.
— CORBAR: Configured similar with CORB, but with the adaptive restore scheme.

5.2. Performance and Energy Evaluation
Fig. 9 shows the GPU throughput under different configurations, all normalized to the
baseline. It is clear to see that employing the selective restore scheme (RD) to suppress

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:12 H. Zhang et al.

Table IV. Benchmarks

Benchmark Description
AES AES Encryption
BAC Back Propagation
BFS Breadth-First Search
CFD CFD Solver
LAV lavaMD
LPS Laplace Solver
LUD LU Decomposition
MUM MUMmerGPU
NEU Neural Network
NN k-Nearest Neighbors
NW Needleman-Wunsch
PVC Page View Count
SRA Structured Grid
SSC Similarity Score
PAT Pathfinder
MON Monte Carlo
SAD Sum of Absolute Differences
SCP ScalarProd

0.4

0.5

0.6

0.7

0.8

0.9

1

AES BAC BFS CFD LAV LPS LUD MUM NEU NN NW PVC SRA SSC PAT MON SAD SCP AVG

G
P

U
 T

h
ro

u
g
h

tp
u

t
C

o
m

p
a

ri
s
o

n

base STT WB RD CO CORB CORBAR

Fig. 9. GPU throughput comparison between different configurations

read disturbance incurs unacceptable performance loss, achieving only 83.4% of the
SRAM baseline performance on average. This is because longer read operations (plus
restore time) significantly increases the probability of stalling pipelines. Fortunately,
our proposed dead read identification scheme (CO) can effectively improve through-
put and achieve 90.6% of the baseline performance, due to the capability of avoiding
unnecessary restore operations. For some applications, such as BAC, NEU and MON,
CO can even alleviate the performance loss to achieve 96.26% of the baseline perfor-
mance. Moreover, CORB further improves performance to 91.9% of the baseline on
average, due to the capability of accommodating read request with multiple accesses.
Some benchmarks like LAV, LPS and LUD can significantly benefit from the high
temporal locality. Finally, CORBAR achieves 93.1% of the baseline performance on
average, since it can adaptively choose when to use DR or SR according to whether
the corresponding bank is busy or not. This adaptive feature is especially helpful for
benchmarks like LPS, SRA and PAT, which have higher number of bank conflicts.

Fig. 10 shows the register file energy consumption under different configurations.
It is not surprising that RD leads to excessive energy consumption overhead, which
even offsets the low energy benefit of STT-RAM technology. For some benchmarks,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

AES BAC BFS CFD LAV LPS LUD MUM NEU NN NW PVC SRA SSC PAT MON SAD SCP AVG

R
F
.

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

C
o

m
p

a
ri
s
o

n

base STT WB RD CO CORB CORBAR

Fig. 10. Energy consumption comparison between different configurations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

AES BAC BFS CFD LAV LPS LUD MUM NEU NN NW PVC SRA SSC PAT MON SAD SCP

R
F
.

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

B
re

a
k
d

o
w

n

Dynamic Leakage Restore Operation Readbuffer_Dyanmic ReadBuffer_Leakage WriteBuffer_Dyamic WriteBuffer_Leakage

Fig. 11. Energy consumption breakdown under different configurations. (1:base, 2:RD, 3:CO, 4:CORB)

such as LPS, NEU and PAT, high restore energy consumption makes the total energy
consumption of STT-RAM 40% greater than the SRAM baseline. Fortunately, the pro-
posed CO scheme can effectively mitigate the restore energy consumption on average
and achieve 78.7% energy consumption of the baseline, even under read disturbance.
CORB consumes 79.8% of the baseline energy on average, meaning the energy over-
head of the small read buffer is trivial. CORBAR consumes 81.2% of the baseline en-
ergy on average. Though CORBAR consumes a little bit higher energy than CORB, the
energy-efficiency of the register file is not sacrificed thanks to the low leakage power
of STT-RAM.

We find an interesting observation. For benchmarks on which leakage energy con-
sumption dominates, such as BFS, CFD, NN and SSC, although the performance
almost does not change when read disturbance occurs, the STT-RAM based design
achieves high energy-efficiency by reducing leakage energy consumption and our pro-
posed design can further cut off the restore energy consumption. On the other hand,
for benchmarks on which dynamic energy consumption dominants, such as AES, BAC
and LPS, our proposed design can effectively alleviate performance loss.

To understand the reason why our propose scheme can effectively reduce the en-
ergy consumption of restore operations, we breakdown the energy consumption of the
register file in Fig. 11. It is clear that employing STT-RAM for the register file design
successfully cuts down high leakage energy consumption. However, due to the read
disturbance issue, the restore energy contributes a large portion energy consumption.
By skiping these unnecessary restore operations, our proposed comprehensive design,
Red-shield, is able to mitigate the restore energy overhead.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:14 H. Zhang et al.

5.3. Overhead Analysis
For the dead read identification, the compiling time is trivial, because it is based on
the standard register analysis that has been widely employed for GPUs. Thanks to
the small feature size of STT-RAM, the area overhead for building a 128KB STT-RAM
register file per SM is only 19.5% of the SRAM based design, according to Table I. We
also adopt a SRAM writer buffer as previous work [Li et al. 2015], which is modelled
as associative SRAM caches with 8KB capacity using NVsim [Dong et al. 2012], and
its area incurs 5.6% hardware overhead. Based on our experiments, a 4KB SRAM
read buffer is enough for our design, and its area incurs 3.2% hardware overhead. In
summary, the area of our proposed STT-RAM register file design is only 28.3% of the
SRAM-based register file design.

6. RELATED WORK
In section, we review the related research work on building STT-RAM based register
file on GPUs and techniques that cope with the read disturbance issue for STT-RAM.

6.1. STT-RAM Based Register file on GPUs
Thanks to these advantages of STT-RAM, researchers have explored STT-RAM based
register file design on GPUs for high energy-efficiency, thereby alleviating the high
leakage power consumption from SRAM.

Goswami el al. first propose to build the register fils and shared memory with STT-
RAM technology [Goswami et al. 2013]. In order to mitigate the overhead of long write
latency of STT-RAM, they re-architect STT-RAM cells with thinner MTJ to trade off
retention time for better performance. To further compensate the performance loss of
STT-RAM, Li et al. propose to design a hybrid register file architecture augmented with
two SRAM write buffer and a warp-aware write back strategy [Li et al. 2015]. Liu et al.
propose to use multi-level cell (MLC) STT-RAM [Liu et al. 2015] to build the register
file for GPUs due by leveraging the high density of MLC STT-RAM cells. Wang et al.
proposes a write-aware STT-RAM based register file design on GPUs, by splitting the
bank write and make the arbitrator to distribute nonconflicting reads and writes to
the same RF bank to increase the access parallelism [Wang and Xie 2015]. Zhang et
al. propose to leverage a light-weight compression algorithm to mitigate the STT-RAM
writes that are associated with high energy consumption [Zhang et al. 2016].

Although these work have demonstrated efficient designs to mitigate the high power
consumption of SRAM, they do not take the read disturbance issue into consideration,
and the read distrubance issue can either result in high error rate making computed
results incorrect, or easily offset the energy benefits of employing STT-RAM, as we
have illustrated. As technology scales, the read disturbance becomes a so critical con-
cern for the STT-RAM based GPU register file design that engineers should carefully
cope with.

6.2. Read Disturbance Issue
Li et al. discuss the reliability issues on STT-RAM memory technology, including write/
read disturbance and write / read failure [Li et al. 2008]. Zhang et al. demonstrate that
the read current must scale accordingly to keep the disturbance on the MTJ resistance
state at a minimum level and keep the safe read margin, otherwise read disturbance
errors shall manifest at small technology nodes [Zhang et al. 2012]. A recent chip
demonstration [Takemura et al. 2010] (45nm) of STT-MRAM treats reads as destruc-
tive and restores the original data after each read. Sun et al. proposes two write modes
for read disturbance and choose the suitable one according to the capability of error
tolerance: One performs restore-after-read to ensure data integrity if the application

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:15

is sensitive to high error rate, while the other does not if having high error toler-
ance [Sun et al. 2012]. Wang et al. postpones the restore operation to a read till the
time that this line is evicted from the upper level cache L1. Based on the status of the
line at the eviction time, they selectively restore the disturbed cells to achieve energy
efficiency [Wang et al. 2015]. As we have analyzed, these already proposed techniques
either incur high performance overhead or high energy consumption overhead if they
are directly applied to the GPU architecture without careful optimization. On the other
hand, our scheme leverages the GPU architecture feature to further eliminate these
unnecessary restore operations, including the register liveness feature, of which prior
work fail to makes good use.

7. CONCLUSION
STT-RAM has been explored as a promising alternative for SRAM to build the large-
capacity register file on GPUs due to the advantage of high energy-efficiency. However,
the read disturbance issue of STT-RAM imposes great challenges for register file de-
sign as technology further scales. To address the read disturbance issue, we present a
novel design, Red-shield. It employs complier optimization to filter out short-lifetime
reads so as to mitigate the performance and energy overhead incurred by the read-
restore operations. Coupled with the read buffer promotion design as well as the opti-
mized read-restore scheme, Red-shield can effectively alleviate pipeline stalls caused
by read disturbance and improve the energy-efficiency. In total, our design can pro-
mote STT-RAM based GPU register files to become a feasible and effective solution for
future GPU architectures.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers for their suggestions to improve this paper.

REFERENCES
Andrew W Appel. 1997. Modern compiler implementation in C. Cambridge university press.
Ali Bakhoda, George L. Yuan, Wilson W L Fung, Henry Wong, and T. M. Aamodt. 2009.

Analyzing CUDA workloads using a detailed GPU simulator. In Proceedings of the Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS). 163–174.
DOI:http://dx.doi.org/10.1109/ISPASS.2009.4919648

Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang, and Kevin Skadron.
2010. A characterization of the Rodinia benchmark suite with comparison to contemporary CMP
workloads. In Proceedings of IEEE International Symposium on Workload Characterization (IISWC).
DOI:http://dx.doi.org/10.1109/IISWC.2010.5650274

Ki Chul Chun, Hui Zhao, J D Harms, Tae-Hyoung Kim, Jian-Ping Wang, and C H Kim. 2013. A
Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-
MRAMs for High-Density Cache Memory. IEEE Journal of Solid-State Circuits 48, 2 (2013), 598–610.
DOI:http://dx.doi.org/10.1109/JSSC.2012.2224256

Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P. Jouppi. 2012. NVSim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 31, 7 (2012), 994–1007. DOI:http://dx.doi.org/10.1109/TCAD.2012.2185930

Wenbin Fang, Bingsheng He, Qiong Luo, and Naga K. Govindaraju. 2011. Mars: Accelerating MapReduce
with graphics processors. IEEE Transactions on Parallel and Distributed Systems 22, 4 (2011), 608–620.
DOI:http://dx.doi.org/10.1109/TPDS.2010.158

Mark Gebhart, Stephen W. Keckler, and William J. Dally. 2011. A compile-time managed multi-level register
file hierarchy. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). DOI:http://dx.doi.org/10.1145/2155620.2155675

Nilanjan Goswami, Bingyi Cao, and Tao Li. 2013. Power-performance co-optimization of throughput core
architecture using resistive memory. In Proceedings of the IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA). DOI:http://dx.doi.org/10.1109/HPCA.2013.6522331

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

39:16 H. Zhang et al.

Naifeng Jing, Yao Shen, Yao Lu, Shrikanth Ganapathy, Zhigang Mao, Minyi Guo, Ramon Canal, and
Xiaoyao Liang. 2013. An energy-efficient and scalable eDRAM-based register file architecture for
GPGPU. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA).
DOI:http://dx.doi.org/10.1145/2508148.2485952

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M Aamodt,
and Vijay Janapa Reddi. 2013. GPUWattch: enabling energy optimizations in GPGPUs. In Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture (ISCA). 487.
DOI:http://dx.doi.org/10.1145/2485922.2485964

Gushu Li, Xiaoming Chen, Guangyu Sun, Henry Hoffmann, Yongpan Liu, Yu Wang, and Huazhong Yang.
2015. A STT-RAM-based low-power hybrid register file for GPGPUs. In Proceedings of the 52nd Annual
Design Automation Conference (DAC). 1–6. DOI:http://dx.doi.org/10.1145/2744769.2744785

Jing Li, Haixin Liu, Sayeef Salahuddin, and Kaushik Roy. 2008. Variation-tolerant Spin-Torque Transfer
(STT) MRAM array for yield enhancement. In Proceedings of the Custom Integrated Circuits Conference.
193–196. DOI:http://dx.doi.org/10.1109/CICC.2008.4672056

Xiaoxiao Liu, Mengjie Mao, Xiuyuan Bi, Hai Li, and Yiran Chen. 2015. An efficient STT-RAM-based reg-
ister file in GPU architectures. In Proceedings of the 20th Asia and South Pacific Design Automation
Conference (ASP-DAC). 490–495. DOI:http://dx.doi.org/10.1109/ASPDAC.2015.7059054

NVIDA. 2009. NVIDIA next generation CUDA compute architecture: Fermi. (2009).
DOI:http://dx.doi.org/10.1016/j.immuni.2005.11.006

NVIDA. 2012. GPU Computing SDK. (2012). https://developer.nvidia.com
David J. Palframan, Nam Sung Kim, and Mikko H. Lipasti. 2014. Precision-aware soft error protection

for GPUs. In The IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 49–59. DOI:http://dx.doi.org/10.1109/HPCA.2014.6835966

Daniele Rossi, Nicola Timoncini, Michael Spica, and Cecilia Metra. 2011. Error Correcting Code Analysis for
Cache Memory High Reliability and Performance. In Design, Automation, and Test in Europe (DATE).
1–6. DOI:http://dx.doi.org/10.1109/DATE.2011.5763257

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. 2009. DRAM errors in the wild: a large-scale
field study. In Proceedings of the eleventh international joint conference on Measurement and modeling
of computer systems (SIGMETRICS). DOI:http://dx.doi.org/10.1145/1555349.1555372

Michael J. Schulte, Mike Ignatowski, Gabriel H. Loh, Bradford M. Beckmann, William C. Brantley, Sud-
hanva Gurumurthi, Nuwan Jayasena, Indrani Paul, Steven K. Reinhardt, and Gregory Rodgers. 2015.
Achieving Exascale Capabilities through Heterogeneous Computing. IEEE Micro 35, 4 (jul 2015), 26–36.
DOI:http://dx.doi.org/10.1109/MM.2015.71

Clinton W. Smullen, Anurag Nigam, Sudhanva Gurumurthi, and Mircea R. Stan. 2011. The STeTSiMS
STT-RAM simulation and modeling system. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD. DOI:http://dx.doi.org/10.1109/ICCAD.2011.6105348

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari,
Geng Daniel Liu, and Wen-Mei W Hwu. 2012. Parboil: A revised benchmark suite for scientific and
commercial throughput computing. IMPACT Technical Report (2012).

Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. 2009. A novel ar-
chitecture of the 3D stacked MRAM L2 Cache for CMPs. In Proceedings of the In-
ternational Symposium on High-Performance Computer Architecture (HPCA). 239–249.
DOI:http://dx.doi.org/10.1109/HPCA.2009.4798259

Zhenyu Sun, Xiuyuan Bi, Hai Helen Li, Weng-Fai Wong, Zhong-Liang Ong, Xiaochun Zhu, and Wenqing
Wu. 2011. Multi retention level STT-RAM cache designs with a dynamic refresh scheme. In Proceed-
ings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 329–338.
DOI:http://dx.doi.org/10.1145/2155620.2155659

Zhenyu Sun, Hai Li, and Wenqing Wu. 2012. A dual-mode architecture for fast-switching STT-RAM. In
Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics and design
(ISLPED). 45–50. DOI:http://dx.doi.org/10.1145/2333660.2333673

R. Takemura, T. Kawahara, K. Ono, K. Miura, H. Matsuoka, and H. Ohno. 2010. Highly-scalable disruptive
reading and restoring scheme for Gb-scale SPRAM and beyond. In Proceedings of the IEEE Interna-
tional Memory Workshop (IMW). DOI:http://dx.doi.org/10.1016/j.sse.2010.11.032

Jue Wang and Yuan Xie. 2015. A Write-Aware STTRAM-Based Register File Architecture for
GPGPU. ACM Journal on Emerging Technologies in Computing Systems 12, 1 (2015), 1–12.
DOI:http://dx.doi.org/10.1145/2700230

Rujia Wang, Lei Jiang, Youtao Zhang, Linzhang Wang, and Jun Yang. 2015. Selective restore: an energy
efficient read disturbance mitigation scheme for future STT-MRAM. In Proceedings of the 52nd Annual
Design Automation Conference (DAC). 1–6. DOI:http://dx.doi.org/10.1145/2744769.2744908

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

Shielding STT-RAM Based Register files on GPUs Against Read Disturbance 39:17

Weisheng Zhao, C. Chappert, V. Javerliac, and J.-P. Noziere. 2009. High Speed, High Stability and Low
Power Sensing Amplifier for MTJ/CMOS Hybrid Logic Circuits. IEEE Transactions on Magnetics 45, 10
(oct 2009), 3784–3787. DOI:http://dx.doi.org/10.1109/TMAG.2009.2024325

Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang, Shimeng Yu, and Yuan
Xie. 2015. Overcoming the challenges of crossbar resistive memory architectures. In Proceedings of the
IEEE 21st International Symposium on High Performance Computer Architecture (HPCA). 476–488.
DOI:http://dx.doi.org/10.1109/HPCA.2015.7056056

Hang Zhang, Xuhao Chen, Nong Xiao, and Fang Liu. 2016. Architecting energy-efficient STT-
RAM based register file on GPGPUs via delta compression. In Proceedings of the 53rd
Annual Design Automation Conference (DAC). ACM Press, New York, New York, USA.
DOI:http://dx.doi.org/10.1145/2897937.2897989

Yaojun Zhang, Wujie Wen, and Yiran Chen. 2012. The prospect of STT-RAM scaling from
readability perspective. IEEE Transactions on Magnetics 48, 11 (2012), 3035–3038.
DOI:http://dx.doi.org/10.1109/TMAG.2012.2203589

Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory
using phase change memory technology. In Proceedings of the 36th annual international symposium on
Computer architecture (ISCA). 14–23. DOI:http://dx.doi.org/10.1145/1555815.1555759

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 5, Article 39, Pub. date: March 2016.

