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ABSTRACT
Many-core accelerators, e.g. GPUs, are widely used for ac-
celerating general-purpose compute kernels. With the SIMT
execution model, GPUs can hide memory latency through
massive multithreading for many regular applications. To
support more applications with irregular memory access pat-
tern, cache hierarchy is introduced to GPU architecture to
capture input data sharing and mitigate the effect of irreg-
ular accesses. However, GPU caches suffer from poor effi-
ciency due to severe contention, which makes it difficult to
adopt heuristic management policies, and also limits system
performance and energy-efficiency.

We propose an adaptive cache management policy specifi-
cally for many-core accelerators. The tag array of L2 cache
is enhanced with extra bits to track memory access history,
an thus the locality information is captured and provided to
L1 cache as heuristics to guide its run-time bypass and inser-
tion decisions. By preventing un-reused data from polluting
the cache and alleviating contention, cache efficiency is sig-
nificantly improved. As a result, the system performance is
improved by 31% on average for cache sensitive benchmarks,
compared to the baseline GPU architecture.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures; B.3.2 [Memory Struc-
tures]: Design Style—Cache memories

General Terms
Design, performance
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Using CUDA [25] or OpenCL [17] for general-purpose com-
puting on graphics processing units (GPGPUs) has become
pervasive in High Performance Computing (HPC). Manu-
facturers are incorporating hardware and software features
to these throughput-oriented accelerators to better support
unstructured applications with unpredictable memory ac-
cess patterns. Caches are one of the important hardware
features that have been included in GPUs to leverage on-
chip data reuse, which can provide significant speedup for
irregular applications written in a straightforward fashion.
To extend the range of applications that benefit from caches,
GPUs need to have specialized cache designs due to their
massively multithreaded execution model.

Massive multithreading makes GPU cache locality difficult
to capture [12, 5, 26], and conventional CPU cache manage-
ment policies are not suitable for GPUs. A GPU usually
has hundreds or thousands of threads running simultane-
ously. Thus, its cache capacity per thread is much smaller
and cache line lifetime is much shorter than that is typically
experienced in CPU. This poor temporal locality reduces
the cache efficiency. Additionally, the spatial locality ben-
efits provided by CPU caches are largely captured by the
coalescing unit in GPU when the same warp accesses con-
secutive memory locations, before the requests are sent to
the memory system. Recent studies [27, 14] have shown that
GPU L1 caches suffer from high contention among concur-
rent warps that are scheduled to the same SIMT core. Poor
locality and lack of intelligent management lead to unsatis-
factory performance impact on applications [12, 26].

To understand GPU cache inefficiency, we conduct detailed
characterization on massively multithreaded applications.
We find that cache contention due to massive multithread-
ing, as well as streaming and thrashing, are major sources
of cache inefficiency. Even optimal replacement policy can
not solve this problem [27]. Thus it is critical to extend
cache line lifetime, so that cache lines can get reused before
its eviction, and useful locality information can be collected
and used to guide management. To extend cache line life-
time, cache lines should be protected by some mechanism,
and some memory requests needs to be bypassed, i.e. sent
to the next level of memory hierarchy without inserting it
into cache. Cache bypassing can extend lifetime, avoid early
eviction, and alleviate cache contention. However, CPU by-
pass policies which are usually designed for last level cache



(LLC) in CPU, can not make robust decisions when applied
to GPU, because poor locality make it difficult to get useful
information. To address this problem, we propose an adap-
tive bypass policy specifically for GPGPU, which is aware
of massive multithreading. The basic observations that in-
spire our design are twofold: first, cache contention caused
by massive multithreading significantly reduces the chance
of cache line reuse, and thus hot (i.e., those are reused many
times) cache lines should be protected; second, for streaming
accesses, cache lines are never reused, and therefore should
be unprotected or bypassed. Contention is detected at run-
time which triggers bypass dynamically to protect hot lines.
To prevent streaming accesses polluting the cache, the in-
sertion policy is modified to treat hot and cold lines dif-
ferently. Our management policies are designed on top of
a cost-effective cache structure, but significantly improve
cache efficiency and system performance. This paper makes
the following contributions:

• We conduct detailed characterization and analyses on
the parallel patterns of massively multithreaded ap-
plications, and indicate the necessity of a specialized
management for GPU caches.

• We present an adaptive cache management policy for
GPGPUs. Hardware extension is introduced to cap-
ture locality information. The proposed bypass and
insertion policy can reduce contention and preserve
space for hot cache lines.

• We implement our design in a cycle-accurate simula-
tor, and the experimental results demonstrate that it
can better exploit temporal locality than current de-
signs, and thereby improve GPU system performance.

The rest of the paper is organized as follows: the massively
parallel programming model and the baseline GPU architec-
ture are introduced in Section 2. benchmark characteriza-
tion is done in Section 3. The proposed management policy
are described in Section 4. Section 5 presents the experi-
mental results. Related works are discussed in Section 6.
Finally Section 7 concludes.

2. BACKGROUND
In this paper, we focus on massively parallel programs (MPPs)
written in OpenCL or CUDA. Although we use NVIDIA
CUDA terminology in the following sections, our design is
also applicable to OpenCL.

2.1 Massively Parallel Programming Model
Individual MPP functions written in single-program multiple-
data (SPMD) form [25] and executed on the GPU device are
called kernel functions. An MPP begins execution on a CPU
and launches kernels onto a GPU. In this paper, we assume
that kernels execute sequentially, i.e. only one kernel is ex-
ecuted at a time. Each instance of the SPMD function is
executed by a GPU thread. Groups of such threads called
cooperative thread arrays (CTAs), a.k.a thread blocks or work
groups, are guaranteed to execute concurrently on the same
SIMT core. Within each group, subgroups of threads called
warps are executed in lockstep fashion, evaluating one in-
struction for all threads in the warp at once.
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Figure 1: Baseline GPU Architecture

2.2 Baseline GPU Architecture
Figure 1 shows the organization of our baseline GPU ar-
chitecture. The memory system consists of register files,
L1 memory (scratchpad and L1 data cache), L2 cache, and
off-chip GDDR DRAM [23, 24, 2]. L1 memory is private
per-core and shared by warps running on the same SIMT
core. Note that scratchpad memory is programmer visible
and is used for explicit intra-CTA communication. The L2
cache is shared across all threads and is divided into multi-
ple banks that are connected to the SIMT cores through an
interconnection network. Each memory partition contains
one L2 cache bank. All requests are grouped by a coalesc-
ing unit [23, 25] before sent to L1 cache. Read-modify-write
atomic operations are performed at each memory partition
by an Atomic Operation Unit (AOU) [23].

GPU caches usually adopt a write-through, write no-allocate
policy for the L1 cache. This policy has been evaluated [28]
to be more efficient than a write-back policy for GPUs. The
L2 caches are write-back with write-allocation, which is the
same design choice as conventional CPU LLC. Compared
to a write-through design, this reduces the total number of
DRAM accesses. Since the aggregate L1 cache size is close to
L2 cache size [23], current GPU LLC is not inclusive which
holds fewer redundant data copies than an inclusive cache.

After a kernel is launched the CTA scheduler schedules avail-
able CTAs associated with the kernel in a round-robin and
load balanced fashion on all the SIMT cores. A warp sched-
uler is also responsible to schedule warps onto execution
units. Many policies have been proposed, e.g. loose round-
robin (LRR) policy, greedy-then-oldest (GTO) [27], two-
level scheduling [22], cache-conscious scheduling (CCWS)
[27], and CTA-aware scheduling [14]. CCWS shows that a
good scheduling policy can improve cache performance when
severe contention occurs in the L1 cache.

3. MOTIVATION
In this section, we evaluate GPU cache performance to ex-
pose why current GPU cache hierarchy is inefficient. An
efficient cache should contain hot cache lines that are reused
multiple times during their lifetimes. In this case, the cache
would show high hit rate and reuse count. These qualities
will reduce memory latency as well as DRAM traffic, which
save bandwidth and energy consumption, and thereby im-
prove system performance and energy efficiency. We also
discuss the GPU cache access patterns that motivate our de-
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Figure 2: L1 Cache Reuse Count Distribution. It shows the number of times cache lines are reused throughout
the entire program execution. Whenever a cache line is never reused it is effectively wasting cache space.

sign. We use memory bound GPU benchmarks that Jog et
al. [14] selected from Parboil [29], Rodinia [4], MapReduce
[10] and CUDA SDK [1] (listed in Table 1). Most of them
are cache sensitive because we focus on improving cache ef-
ficiency. We also include some cache insensitive benchmarks
to show that they are not hampered by the proposed design.

3.1 GPU Cache Inefficiency
Figure 2 shows the reuse count distribution for L1 cache. For
most of the benchmarks, a large portion of the cache lines
brought into the L1 caches are never reused, i.e. the reuse
count is zero. For example, BFS has nearly 80% cache lines
that are never reused. The non-reused cache lines could ei-
ther be streaming accesses or victims of early eviction. The
early eviction happens even more commonly in L1 cache
than L2 cache since the L1 cache is relatively small and
shared by tens of warps (e.g. Fermi supports a maximum of
48 warps, and each warp contains 32 SIMT threads). The
warps contend for L1 cache space and continually replace
the data of each other in the cache. Note that even if GPU
caches are not efficient, there is not usually a significant
performance penalty for GPU-friendly applications because
massive multithreading can effectively hide memory latency.
Cache performance only becomes critical when an applica-
tion is bounded by memory bandwidth and the memory la-
tency can no longer be hidden due to application character-
istics. Besides, since cache line lifetime is very short [27],
even the optimal replacement policy (i.e. always choose the
furthest reused candidate to replace) shows very limited im-
provement due to frequent early eviction.

3.2 Cache Access Patterns
Streaming is one of the common access patterns for regular
GPGPU applications. If this pattern dominates the entire
kernel, cache efficiency has a limited impact on performance.
Streaming often leads to very high miss rate, especially when
the memory accesses are well coalesced. High miss rate can
also be caused by thrashing or cache contention. Thrashing
accesses are also common because L1 caches are relatively
small. Since warps that are scheduled onto the same SIMT
core share L1 cache, they may contend for limited L1 cache
space, and requests from different warps cause cache lines
continually replace each other, so no warp is able to use the
L1 cache effectively. In order to illustrate how the cache con-
tention affects L1 cache behavior, Figures 3 and 4 show the
miss rate and speedup when varying the L1 cache size for
cache sensitive benchmarks. These benchmarks significantly
benefit from larger L1 cache size, because less contention

Benchmarks Description Suite

Cache Sensitive

BFS Breadth First Search [4]
KMN K-means Clustering [4]
PVC Page View Count [10]
SSC Similarity Score [10]
SD2 Graphic Diffusion [4]
SPMV Sparse Matrix Vector Multiply [29]
SYRK Symmetric Rank-K [9]
IIX Inverted Index [10]

Moderately Sensitive

FFT Fast Fourier Transform [29]
CFD CFD Solver [4]
PVR Page View Rank [10]
NW Needleman-Wunsch [4]

Cache Insensitive

SD1 Graphic Diffusion [4]
BP Back Propagation [4]
STL Stencil [29]
WP Weather Prediction [1]
FWT Fast Walsh Transform [1]

Table 1: Benchmarks

can lead to the capture of the temporary locality within the
warp or between warps on the same SIMT core. Thus, in
case of mixed access pattern in real application, this con-
tention pattern should be distinguished from streaming pat-
tern, because there is a possibility to improve the behavior
of contention by employing better management policy, but
no such possibility exists for streaming pattern. In order to
fundamentally address these problems, GPU cache manage-
ment policy should be aware of massive multithreading, and
be adaptive to different cache access behaviors.

4. G-CACHE ORGANIZATION AND MAN-
AGEMENT

In this section, we describe our proposed design, the G-
Cache. The difficulty of managing GPU cache is that the
massive multithreading makes it difficult to get useful cache
locality information [11] which is collected by a conventional
CPU cache to guide management. Based on the analyses in
Section 3, we found that cache contention leads to severe
cache inefficiency in L1 cache which results in unsatisfying
performance. Early eviction happens so frequently that the
cache controller cannot tell which lines are really the candi-
dates for future reuse. Thus, GPUs need some specialized
mechanism to avoid caching streaming accesses, so that the
lifetime of cache lines can be extended enough to collect
reuse information. Even if there is no streaming accesses,
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Figure 4: L1 Cache Size Sensitivity: Speedup

the controller has to be able to protect hot cache lines long
enough and forward some requests to the lower level cache
or DRAM. Cache bypassing can be used to alleviate the con-
tention if we can detect it at runtime. However, a bypass
policy should be designed carefully to avoid bypassing cache
lines that will be frequently reused in the future.

4.1 Hardware Extension
We first introduce the hardware extension to enable heuris-
tic management. Each L1 cache set adds one bit “bypass
switch” (Figure 5) to control bypass, i.e. “0” means bypass
disabled, and “1” means bypass enabled. We also extend the
tag array of L2 cache with extra bits to store memory access
history. As shown in Figure 6, an L2 cache entry consists
of these fields: state bits, RRPV (Re-Referencing Predic-
tion Value [11]), tag, data and “victim bits”. The state bits,
RRPV, tag and data are functionally the same as they do
in traditional caches. The victim bits are added to con-
trol bypass decisions. They are bitmasks associated with a
cache line where each bit records the access history from a
particular L1 cache before the line’s eviction. The bit is set
when L2 cache fulfills the request from the corresponding L1
cache, and reset when the line is evicted from L2 cache. Us-
ing the victim bits, contentions in L1 caches can be detected
when the L1 cache sends a second request to the cache line
that was requested recently. When contention is detected,
L1 cache can enable bypass to mitigate it. Note that the
G-Cache is a cost-effective design because the existing tag
array in L2 cache are reused to collect locality information
for L1 cache, instead of adding an extra victim tag array
[27] or memory address FIFO [6]. The hardware overhead
can be further reduced by letting multiple SIMT-cores share
the same victim bit, or even all cores share 1 bit. This may
lead to inaccurate bypass decision, thus is a tradeoff between
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Figure 5: Hardware Extension on L1 Data Caches

overhead and performance gain.

4.2 Adaptive Bypass and Insertion
We adopt cache bypassing to extend the lifetime of cache
lines. CPU bypass policies are not effective when applied to
GPU, because they are intuitively designed for CPU LLC,
and is not aware of GPU massive multithreading. We present
an adaptive bypass policy for GPGPU which can deal with
cache contention caused by massive multithreading. In our
design, L2 cache is responsible to detect contention and no-
tify the L1 cache. It interprets two memory requests from
the same L1 cache to the same memory location as con-
tention that causes early evictions in the L1 caches. Along
with the requested data, L2 cache sends the value of the
corresponding victim bit to the requester. This value no-
tifies the L1 cache that this line was referenced before and
became a victim of early eviction. With the victim bit set,
L1 cache controller opens the bypass switch of the target set
in L1 cache. When bypass switch is on, and all the exist-
ing lines in the target set are hot, a incoming block will be
bypassed, since we want to protect hot lines. The RRPV of
every existing line in the target set is checked to make this
decision. If the RRPV is smaller than a threshold THhot,
the line is considered as hot. If the attached victim bit is set,
meaning the incoming block has lost locality, THhot will be
lower to make it easier to replace one of the existing lines.
However, when a line is bypassed, RRPVs of all lines in the
target set are incremented. This is because the bypass vic-
tim could be a hot line in the future. To make sure it can be
inserted into L1 cache when it becomes hot, the “hotness”
of the existing lines is reduced whenever bypass happens.
Note that the bypass switch can be shut down periodically
to reduce side effect of bypassing. Overall, the proposed by-
passing is heuristically controlled and adaptive to the cache
contention. We adopt bypass on fill (whether or not to fill
data into L1 cache) since it can further extend lifetime.

Figure 7 shows how our proposed bypassing works. We

State Tag DataRRPV
Victim 

Bits

Figure 6: Hardware Extension on L2 Cache
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Figure 7: Bypass example with a 2-way associative
cache. The left column is the access sequence, i.e.
{a1, a2, b1, ..., b1}. Blue boxes are cache lines. “I”
denotes “Invalid”. The number in the bottom right
side is the corresponding RRPV.

present this example in the way that is similar to Figure
3 in [11]. Assume that the access stream is {a1, a2, b1, a2,
a1, a1, b1, b2, a1, a2, b1, b1}, which is a stream mixed with
hot accesses (ax) and streaming accesses (bx). This kind of
access stream can be found in SPMV, where the matrix is
streaming, but the vector is reused multiple times. In the
beginning, the bypass switch of this set is off, indicating by-
pass of this set is disabled. When the request a1 gets missed
for the second time, L2 cache detects this as contention,
and sends a notification to L1 cache, which opens the by-
pass switch. After that point, when b1 and b2 come in, they
are bypassed, because both a1 and a2 are hot (with RRPVs
less than 2), and the bypass switch is on. Thus, for the fol-
lowing requests a1 and a2, they both hit in cache. In case b1
is becoming hot in the future, the RRPVs of a1 and a2 are
incremented each time a request is bypassed. When b1 keeps
coming in, a1 and a2 become cold, and they eventually get
replaced if b1 is accessed enough times.

4.3 Hardware Cost and Complexity
G-Cache has comparatively low hardware overhead. The ad-
ditional costs in both storage area and logic complexity are
reasonably low, so that the proposed memory hierarchy can
be easily produced with the current manufacture process.
The storage overhead for G-Cache is in victim bits, repre-
sented by Ov. Assume L2 cache has N sets and M ways,
and the number of L1 caches is P , the storage overhead is:
Ov = P × N ×M bits. For a 16-core GPU with a 512-set
16-way associative L2 cache (1MB in size), Ov = 16KB,
essentially 1KB for each L1 cache on average. To further re-
duce hardware overhead, we can reduce the length of victim
bits Lv by letting multiple SIMT-cores share the same victim
bit. Assume Sv SIMT-cores share one bit, then Lv = P

Sv
.

The storage overhead in L1 cache is negligible and the logic
complexity for bypass policy is close to state-of-the-art cache
replacement policy (RRIP). In terms of interconnect traffic,
because the victim bits information collected by L2 cache is
sent together with the data response from L2 cache, there
are no extra requests or responses being generated.

SIMT Core
16 cores, 1.4GHz,

5-Stage Pipeline, SIMT width = 32

Resources / Core
48KB Scratchpad, 32768 Registers,

1536 Threads, 48 warps
L1 Data Caches / Core 32KB, 4-way, 128B line size

L2 Cache Bank
128KB, 16-way,

128B line size, 700MHz

Features
Coalescing enabled,

32 MSHRs/core

Scheduling
LRR warp scheduling,

round-robin CTA scheduling

Interconnect
2D Mesh, 1.4 GHz,
32B channel width

DRAM Model
FR-FCFS, 8MCs,

4 DRAM banks/MC, 2KB row size

GDDR5 Timing
1.4 GHz, tCL=12, tRP=12, tRC=40,

tRAS=28, tRCD=12, tRRD=6

Table 2: Simulation Configurations

4.4 Comparison of Alternative Methods
We consider several alternative strategies for improving cache
efficiency. First, increasing cache size could reduce con-
tention and extend cache line lifetime, but also increases
cache access latency and costs more area and power con-
sumption [14]. Even though larger caches are being included
in GPUs, a management policy that is aware of massive mul-
tithreading is still beneficial. Second, cache-aware schedul-
ing policies can also alleviate contention [27, 14]. While
CCWS tries to reduce multithreading, bypass tries to satu-
rate L1 cache with hot cache lines and forward the others
to the lower level of the memory hierarchy. The L2 cache
provides locality information to L1 cache instead of requir-
ing victim tag array [27] to collect it. Moreover, bypass can
also cooperate with the scheduler to further improve cache
efficiency. Third, existing CPU bypass policies [7, 6] which
are intuitively designed for LLC, can be applied to GPU,
but limited L1 cache size and cache inefficiency makes them
less effective. In PDP cache [6], the amount of hits that fall
into the samplers are too small, which makes it unstable to
estimate the near-optimal PD, and thus leads to suboptimal
performance. Instead G-Cache does not try to find the op-
timal PD, but to keep the hot lines in the cache. and avoid
streaming accesses staying in cache too long. Thereby cache
space is saved to mitigate cache contention, which sometimes
leads to even better performance than SPDP-B policy. Be-
sides, G-Cache is more cost-effective because no sampling
logic, dedicated pipeline or harsh table is required.

5. EVALUATION
We evaluate G-Cache by considering the improvements on
overall performance and its impact on cache efficiency. G-
Cache (GC) is compared with several designs including the
baseline (BS) and the baseline with 3-bit SRRIP policy (BS-
S), as well as PDP-3, PDP-8 and SPDP-B which are de-
scribed in [6]. The only difference between BS and BS-S is
the L1 cache replacement policy. BS uses LRU policy, while
BS-S uses 3-bit SRRIP policy. Note that we use 32 FIFOs
per-set for PDP-3 and PDP-8, and 256 FIFOs per-set for
SPDP-B. For all of them, 256 RDD counters are used to
make PD estimation as accurate as possible, although it is
expensive to implement. Although SPDP-B is not practi-
cal and PDP-8 is too expensive, they are presented to show
the near-optimal performances. We show that GC achieves
almost the same performance as SPDP-B, and outperforms
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Figure 8: Performance speedup of our proposed design normalized to baseline GPU architecture
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Figure 9: L1 miss rate of all benchmarks

dynamic PDP with cheaper and simpler hardware. We use
GPGPU-Sim v3.1.2 [3] to model the baseline architecture
which mimics a generic NVIDIA Fermi GPU [23]. The base-
line architecture uses a detailed GDDR5 DRAM model. Ta-
ble 2 lists the major configuration parameters. We use the
benchmarks in Table 1 for evaluation.

5.1 Performance
Figure 8 shows performance (IPC) speedup of all differ-
ent designs, normalized to BS. We use geometric mean for
speedup. For cache sensitive benchmarks, GC gets reason-
able speedup over BS, from 13.4% up to 51.8%, and 30.9%
on average, while PDP-3 outperforms BS by 23.8% on av-
erage. For most of them, GC achieves competitive perfor-
mance than SPDP-B, but for KMN and NW it works worse,
because the reuse distances of these two benchmarks are too
large that GC can not provide enough protection for these
thrashing behaviors. While for SPMV, GC works better than
SPDP-B because GC can tell the difference between stream-
ing accesses and hot accesses, but PDP cannot. Thus the
streaming accesses are evicted earlier which save space for
useful cache lines. Another reason is, PDP gets unstable
PDs due to lack of locality information, but GC essentially
enforces its RRPVs to be less than 8 (23), which makes its
RRPVs more stable than the PDs of PDP policies, and thus
works better than PDP for benchmarks whose optimal PD
is close to or smaller than 8. To further improve GC to deal
with very large PDs, we can increment RRPVs on every Mth

bypass to the set, with a counter counting up to M . M is
set to 1 initially, and can be adjusted at runtime according
to the contention information collected by L2 cache.

We can also find that on average PDP-3 archives perfor-

mance close to PDP-8, (23.8% and 26% for cache sensitive
benchmarks), and works even better than PDP-8 for some
of the benchmarks. After all GC outperforms dynamic PDP
policies and needs simpler hardware extension. For moder-
ately sensitive benchmarks, even if they are not quite sen-
sitive to L1 cache size, they still can slightly benefit from
bypassing. For cache insensitive benchmarks, they show
no speedup or very limited speedup as expected. For all
benchmarks, GC and PDP-3 outperforms BS by 15.6% and
11.8% on average respectively. By comparing BS-S with
BS, we find out that without bypass, 3-bit SRRIP policy
almost has no impact on the performance, which demon-
strates the performance benefit comes from bypass instead
of replacement policy. The reason why replacement policy
hardly affect performance is, although 3-bit SRRIP policy
can potentially extend cache line lifetime, early eviction still
happens frequently without bypassing.

5.2 Cache Efficiency
Figure 9 illustrates that the performance improvement comes
from the decline of L1 cache miss rate. For most of the cache
sensitive benchmarks, the cache miss rate drops significantly.
For SPMV we can see that GC reduces more miss rate than
SPDP-B, which leads to better performance. On the other
hand, GC works worse than SPDP-B for KMN due to the
short protection distance. The miss rate of SD2 goes from
98.8% to 96.6%, but its performance improves 33%. This
is because SD2 can benefit from longer lifetime extended by
the“bypass on fill”policy. Figure 9 also shows that 3-bit SR-
RIP gets the same miss rate as baseline and thus is almost
helpless when severe contention happens. SD1, STL and WP
show a little bit increase on the miss rate with GC, because
their access patterns do not benefit from bypass, but bypass



still happens because of detected contention. For cache in-
sensitive benchmarks, they barely show any difference. Ta-
ble 3 lists the bypass ratio (cache bypass as a fraction of
accesses) of GC and SPDP-B. GC bypassed more accesses
than SPDP-B for SPMV, while KMN and NW have much more
accesses bypassed in SPDP-B than GC. This is consistent
with the performance and miss rate results.

5.3 Scalability Study
In the future, manufactures may enlarge L1 cache size to
satisfy performance requirement of more emerging applica-
tions. We also evaluate our design with larger L1 caches.
Figure 10 shows G-Cache can improve system performance
even when 64 KB L1 caches are applied to baseline and G-
Cache. Even if larger caches are applied, the contention
cannot be eliminated. Thus, the bypass policy can still help
alleviate contention and improve performance. On average,
G-Cache can provide 35.7% performance improvement for
cache sensitive benchmarks and 16.1% overall, which is also
very close to those of SPDP-B (40.1% and 19.5%).

6. RELATED WORKS
6.1 CPU Cache Management
Cache management is a well-explored research area for chip
multiprocessors (CMPs). Re-reference interval prediction
(RRIP) [11] modifies the LRU and the NRU policies to treat
misses and hits differently so that the reused cache lines are
protected from being replaced by a burst of requests whose
reuse interval is in the distant future. We build our bypass
policy on top of RRIP, and specialize it for GPGPU.

Cache bypassing has been investigated to selectively bypass
data in the on-chip caches. Jayesh et al. presented a selec-
tive bypass algorithm based on trip counts and use counts for
exclusive LLC [7]. Mazen et al. introduced a counter-based
LLC bypass algorithm [16] leveraging a prediction table.
Choi et al. [5] proposed a GPU read-bypassing scheme which
prevents the shared cache from being polluted by streamed
data that are consumed only within a CTA, thereby protests
shared data for inter-CTA communication. Dead block pre-
diction techniques [15, 18, 20] are utilized to guide replace-
ment and bypass decisions. They generally predict a cache
line is dead and avoid caching it by selecting it as replace-
ment candidate or bypassing it. PDP cache [6] introduced
“protection distance” to protect cache lines from being re-
placed. If no line is not protected, the incoming request is
bypassed. Dynamic PDP requires a sampling module with
per-set FIFOs and counter array, and a dedicated pipeline
to compute the protection distance (PD) at runtime.

6.2 GPU Cache Management
LLC management policy for 3D scene rendering workloads
on graphics processor are explored by Gaur et al. [8], while
our work focuses on general purpose applications on GPU.
Some other work studied cache management schemes for
CPU-GPU heterogeneous systems [19, 21]. MRPB [13] em-
ployed L1 cache bypassing to reduce intra-warp contention
in GPU. The bypass is triggered when resource unavailabil-
ity stalls happen, i.e. a burst of requests access the same
cache set in a short period of time. While MRPB bypass-
ing works for a special case, G-Cache is designed for more
general cases, which supports much more applications.

Benchmarks
G-Cache

Bypass Ratio
SPDP-B

Bypass Ratio
Optimal PD
of SPDP-B

BFS 30.2% 33.5% 14
KMN 56.1% 70.6% 24
PVC 37.8% 35.8% 10
SSC 45.0% 55.6% 20
SD2 37.9% 45.6% 16
SPMV 37.2% 18.1% 6
SYRK 43.0% 36.2% 9
IIX 34.7% 25.3% 12
FFT 8.5% 25.3% 32
CFD 44.3% 29.2% 7
PVR 39.9% 0% 4
NW 5.1% 59.0% 68
SD1 2.7% 0% 4
BP 0.2% 0.1% 5
STL 11.3% 0% 4
WP 31.9% 27.5% 9
FWT 0% 3.8% 32

Table 3: Comparison on bypass control of G-Cache
and SPDP-B with 32KB 4-way associative L1 cache
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Figure 10: Performance speedup over baseline ar-
chitecture. All designs have 64KB L1 caches.

Other works investigated warp scheduling policies [27, 14] to
improve cache efficiency. CCWS [27] leverages warp sched-
uler to alleviate L1 cache contention in GPUs. A victim tag
array called “lost locality detector” is proposed in each L1
cache to gather replacement information. When contention
is detected, i.e. some warps lost a lot of locality, the sched-
uler then suspends some of the other warps (not allowed to
issue instructions). However, G-Cache reduces contention
through cache bypassing and requires simpler and cheaper
hardware. MRPB [13] uses FIFO buffers to reorder mem-
ory requests before they are sent to L1 cache. Reordering
can preserve intra-warp locality and reduce inter-warp con-
tention. While CCWS and MRPB can both improve cache
efficiency, G-cache focuses on cache management, and it can
work along with CCWS and MRPB to further improve per-
formance and energy efficiency.

Compiler techniques for improving GPU cache performance
are also investigated [12, 30]. Although static compiler-
directed bypassing could be effective for regular applications,
we provide a hardware dynamic solution that adapts to dif-
ferent runtime behavior of applications. This allows for dy-
namic adjustment in response to different input data and
application lifetime behaviors.

7. CONCLUSION



Many-core accelerators e.g. GPUs are evolving to support
more applications. However, GPU caches is not designed
with awareness of massive multithreading. In this paper we
rethink the cache organization and management in GPG-
PUs. We observe that the current GPU cache performs
poorly when massive multithreading makes it difficult to
capture locality. Based on observations and analyses, we
propose an adaptive management policy to achieve better
performance. We employ runtime bypass to alleviate cache
contention in L1 cache. The bypass policy is designed to
be aware of massive multithreading and aggressively extend
cache line lifetime when severe contention happens. The
management policy is built on top of a cost-effective hard-
ware design. Experimental results demonstrate that our de-
sign significantly outperforms baseline architecture for cache
sensitive benchmarks.
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