
Parallel Computing 78 (2018) 101–114

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Orchestrating parallel detection of strongly connected

components on GPUs

�

Xuhao Chen

∗, Cheng Chen , Jie Shen , Jianbin Fang , Tao Tang , Canqun Yang ,
Zhiying Wang

College of Computer, National University of Defense Technology, China

a r t i c l e i n f o

Article history:

Received 1 April 2017

Revised 1 August 2017

Accepted 2 November 2017

Available online 10 November 2017

Keywords:

Strongly connected components

GPU

Real-world graphs

Hybrid parallelism

a b s t r a c t

Detecting strongly connected components (SCC) is a practical graph analytics algorithm

widely used in many application domains. To accelerate SCC detection, parallel algorithms

have been proposed and implemented on GPUs. However, existing GPU implementations

show unstable performance for various graphs, especially for real-world graphs, as these

implementations do not have a clear understanding of the graph properties. In this paper,

we analyze that graphs in SCC detection usually exhibit (1) skewed component sizes (the

static property) and (2) dynamically changed graph structure (the dynamic property). To

deal with these irregular graph properties, we propose a hybrid method that divides the

algorithm into two phases and exploits different levels of parallelism for different-sized

components. We also customize the graph traversal strategies for each phase to handle the

dynamically changed graph structure. Our method is carefully implemented to take advan-

tage of the GPU hardware. Evaluation with diverse synthetic and real-world graphs shows

that our method substantially improves existing GPU implementations, both performance-

wise and applicability-wise. It also achieves an average speedup of 5.6 × and 1.5 × over

the sequential and OpenMP implementations on the CPU respectively.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Strongly connected component (SCC) detection is a fundamental graph analysis problem that is pervasively present in

many application domains. Tarjan’s algorithm [1] is an efficient sequential method to solve the SCC detection. However,

parallelizing Tarjan’s algorithm is challenging as it applies an inherently sequential DFS (depth-first search) traversal of the

graph. To accelerate the SCC detection for large-scale graphs, parallel algorithms using the BFS (breadth-first search) traversal

have been proposed. The Forward-Backward (FB) algorithm [2] and its enhancement FB-Trim [3] are practical algorithms

that bring in performance improvement.

Barnat et al. [4] implemented the FB-Trim algorithm using the CUDA programming model on the GPU. Due to the par-

allelization, their implementation achieves high performance for some randomly generated graphs. However, their imple-

mentation does not fully take graph properties into consideration, and therefore the implementation cannot work well for

different types of graphs, especially for the real-world graphs [5,6] .
� The source code of this work can be found at https://github.com/chenxuhao/gardenia
∗ Corresponding author.

E-mail addresses: chenxuhao@nudt.edu.cn , cxh@illinois.edu , chen_xuhao@126.com (X. Chen), chencheng@nudt.edu.cn (C. Chen), j.shen@nudt.edu.cn (J.

Shen), canqun@nudt.edu.cn (C. Yang).

https://doi.org/10.1016/j.parco.2017.11.001

0167-8191/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2017.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2017.11.001&domain=pdf
mailto:chenxuhao@nudt.edu.cn
mailto:cxh@illinois.edu
mailto:chen_xuhao@126.com
mailto:chencheng@nudt.edu.cn
mailto:j.shen@nudt.edu.cn
mailto:canqun@nudt.edu.cn
https://doi.org/10.1016/j.parco.2017.11.001

102 X. Chen et al. / Parallel Computing 78 (2018) 101–114

On the other hand, Hong et al. [7] improved the FB-Trim algorithm with an efficient parallel CPU SCC detection method

specifically for processing real-world graphs. They used a two-phase method to handle small-world graphs, and got tremen-

dous speedup on multicore CPUs. Hong’s work implies that graph algorithms should be aware of graph properties and make

adjustment to handle different situations. Graph properties are also critical for GPU implementations as we evaluated.

Real-world graphs in social networks usually exhibit the small-world property with a power-law degree distribution, and

therefore graphs usually include a giant SCC and a lot of small-sized nontrivial SCCs (i.e. skewed component sizes, the

static graph property). In addition, the graph structure is dynamically changed when performing the SCC detection. That

is to say, once an SCC is detected, it is removed from the original graphs (i.e. the dynamic graph property due to the

graph algorithm). Therefore, after the giant SCC is detected and removed, the remaining graph contains a large amount of

disconnected small subgraphs. Previous GPU implementations (e.g. Barnat’s implementation) cannot efficiently handle such

cases as they becomes almost serialized when processing the remaining subgraphs.

In this work, we propose an efficient, hybrid SCC detection method on the GPU to overcome the limitation of existing

GPU implementations. Our method is designed by taking graph properties into account. First, to deal with the static prop-

erty, we decompose the SCC detection into two phases: processing the giant SCC and processing the remaining small-sized

nontrivial SCCs. The two phases utilizes different parallelism approaches. The single giant SCC is full of data parallelism

while the large amount of small-sized SCCs can benefit from task parallelism. To enable efficient task parallelism in the sec-

ond phase, we examine optimizations that previously utilized in CPU SCC and port them to the GPU. Second, to deal with

the dynamic property, we further devise different BFS traversal strategies and choose the suitable one for each phase. By

using the two-phase hybrid method and by customizing the graph traversal strategies, our method is able to achieve high

performance for a large variety of synthetic and real-world graphs.

We validate the effectiveness and efficiency of our hybrid method using CUDA on the NVIDIA GPU. Evaluation with di-

verse synthetic as well as real-world graphs shows that our method significantly outperforms existing GPU implementations.

We also compare our method with the state-of-the-art sequential and OpenMP implementations on the CPU, and we achieve

an average speedup of 5.6 × and 1.5 × , respectively.

The main contributions in this work are:

(1) We propose a hybrid SCC detection method that decomposes the SCC detection into two phases and enables different

parallelism approaches for different phases to deal with graph irregularities.

(2) We examine the state-of-the-art graph traversal strategies and apply the best-performing strategy to fit the graph

properties of each SCC phase.

(3) We port optimization techniques proposed in CPU SCC detection to our GPU implementation to exploit more paral-

lelism.

(4) We demonstrate the effectiveness and efficiency of our hybrid method by implementing and evaluating the proposed

method with different types of synthetic and real-world graphs.

The rest of the paper is organized as follows: Section 2 introduces the existing parallel algorithms as well as the state-

of-the-art GPU implementations. Section 3 details our proposed design. The experimental evaluation is present in Section 4 .

We discuss related work in Section 5 , and we conclude the paper in Section 6 .

2. Background and motivation

A strongly connected component in a directed graph refers to a maximal subgraph where there exists a path between

any two vertices in the subgraph. SCC detection which decomposes a given directed graph into a set of disjoint SCCs is

widely used in many graph analytics applications, including web and social network analysis [8] , formal verification [9] ,

reinforcement learning [10] , mesh refinement [3] , computer-aided design [11] and scientific computing [12] .

The classic sequential SCC detection algorithm, a.k.a Tarjan’s algorithm, is difficult to parallelize because it is based on the

DFS graph traversal which is known to be inherently sequential [13] . Thus, parallel algorithms have been investigated and

designed to speedup SCC detection on parallel machines. In this section, we first introduce widely used parallel algorithms,

and then discuss existing GPU implementations and their performance limitation.

2.1. Parallel SCC detection

Fleischer et al. proposed a practical algorithm, i.e. Forward-Backward (FB) algorithm [2] , which achieves parallelism

by recursively partitioning the given graph into three disjoint subgraphs that can be processed independently. McLen-

don et al. [3] extends the FB algorithm with a Trim step to quickly detect size-1 1 SCCs. The FB-Trim algorithm is shown

in Algorithm 1 . This algorithm includes two parts: FB and Trim.

The FB part proceeds as follows. A vertex called pivot p is selected (line 4) and the strongly connected component S

that this pivot belongs to is computed (line 7) as the intersection of the forward reachable set FW (line 5) and backward

reachable sets BW (line 6) of the pivot. Computation of the reachable sets divides the graph into four subgraphs: (1) the

strongly connected component S with the pivot, (2) the subgraph FW �S given by vertices in the forward reachable set but
1 Size- n SCC means the SCC contains n vertices. Thus, size-1 SCC only contains one vertex.

X. Chen et al. / Parallel Computing 78 (2018) 101–114 103

Algorithm 1 FB-Trim Algorithm [3] .

1: procedure FB-Trim(G (V, E) , SC C)

2: Trim (G , SC C)

3: if V � = ∅ then

4: p ← pick any vertex in G

5: F W ← Fwd-Reach (G , p)

6: BW ← Bwd-Reach (G , p)

7: S ← F W ∩ BW

8: SCC ← SCC ∪ S

9: in parallel do

10: FB-Trim (F W \ S, SC C)

11: FB-Trim (BW \ S, SC C)

12: FB-Trim (G \ (F W ∪ BW) , SC C)

13: end in parallel

14: end if

15: end procedure

T
not in the backward reachable set (line 10), (3) the subgraph BW �S given by vertices in the backward reachable set but

not in the forward reachable set (line 11), and (4) the subgraph G �(FW ∪ BW) given by vertices that are neither in the

forward nor in the backward reachable set (line 12). Since an SCC cannot belong to more than one partition, each partition

can be processed independently. The subgraphs that do not contain the pivot form three independent instances of the same

problem, and therefore they are recursively processed in parallel with the same algorithm. Furthermore, since each subgraph

produces three additional subgraphs, it is expected that quickly there would be sufficient independent tasks to consume all

of the parallel processing elements [7] .

Based on the FB algorithm, the FB-Trim algorithm adds a Trim step (line 2) to preprocess the trivial SCCs (i.e. size-1 SCCs)

before picking the pivot. Since a trivial SCC has either zero incoming edges or zero outgoing edges, it can be easily identified

by only looking at the number of neighbors, rather than by computing two reachable sets (which is computationally more

expensive). The Trim step is described in Algorithm 2 .

Algorithm 2 Trim Procedure.

1: procedure Trim(G (V, E) , SC C)

2: repeat

3: for each vertex v ∈ V in parallel do

4: if degree in (v) = 0 or degree out (v) = 0 then

5: SCC ← SCC ∪ {{ v }}
6: G ← G \ { v }
7: end if

8: end for

9: until G not changed

10: end procedure

2.2. Existing GPU implementations and the limitations

Barnat et al. [4] implemented a similar FB-Trim algorithm using CUDA [14] on the GPU

2 . Stuhl [15] improved this work

with advanced graph traversal implementations. Their methods work efficiently for some randomly generated graphs, but

show very limited performance when applied to graphs with many small-sized nontrivial SCCs. Fig. 1 shows the performance

of Barnat’s CUDA implementation normalized to the sequential Tarjan’s algorithm. For non-small-world graphs which have

only one nontrivial SCC (rmat-er , kron21 , Hamrle3 , cage14 and cage15), Barnat’s implementation achieves significant

speedup (9.5 × ∼ 19.8 ×). For the remaining small-world graphs which have a giant SCC and a large amount (up to tens of

thousands) of nontrivial SCCs, Barnat’s implementation is much slower than the sequential algorithm.

The poor performance is due to the fact that real-world graphs usually exhibit the small-world and power-law proper-

ties, leading to skewed component sizes in SCC detection (see Fig. 2). Typically, a small-world graph, especially in social

networks, contains a single giant SCC and a large amount of small-sized nontrivial SCCs. When the giant SCC is detected

and removed, the remaining graph consists of a large number of disconnected subgraphs. In this case, the conventional FB-

rim algorithm becomes almost sequential because most of the subgraphs are disconnected and only a few pivots can be
2 In Barnat’s implementation, the Trim step is only applied within the main loop.

104 X. Chen et al. / Parallel Computing 78 (2018) 101–114

Fig. 1. Performance of Barnat’s CUDA SCC detection, normalized to the sequential Tarjan’s algorithm. See the datasets description in Table 1 .

Fig. 2. The SCC size distribution of two different types of graphs. LiveJ (left) is a small-world graph that contains a giant SCC and lots of small-sized

SCCs, while cage14 (right) is a non-small-world graph that contains only one giant SCC (thus there is only one point in the right subfigure).

selected in each iteration. This graph irregularity is not properly considered and handled by existing GPU implementations,

resulting in extreme inefficiency. Note that the problem also exists in CPU parallel implementations, but it leads to even

worse performance in GPU environment, due to the weaker single-thread computation capability of the GPU.

Moreover, processing a graph with skewed component sizes requires different parallelism approaches and traversal

strategies to deal with different-sized subgraphs. For example, when detecting the single giant SCC, the entire GPU is ded-

icated to compute it, exploiting data-level parallelism. In this phase, we can apply sophisticated graph traversal strategies.

However, when processing the remaining graph with many small-sized subgraphs, straightforward strategies would be bet-

ter since data parallelism is very limited and task parallelism dominates the phase. Existing GPU implementations with a

fixed parallelism approach and traversal strategy can not adapt to the graph property changes, leading to severe performance

degradation.

In summary, the unsatisfactory performance of existing GPU implementations motivates us to design a new method that

can better handle the graph irregularities and to fully take advantage of the underlying GPU hardware.

3. Design and implementation

Despite the irregularity, recent studies [16–20] demonstrate that GPUs can substantially accelerate graph algorithms with

careful design and optimization. In this section, we present our design and implementation of SCC detection that can make

good use of the GPU hardware.

3.1. The design overview

Our design follows a top-down approach. First, As most real-world graphs exhibits skewed-component sizes in SCC de-

tection (i.e., a single giant SCC and many small-sized SCCs), leading to severe irregularity and load imbalance, we propose

a hybrid method to solve the challenge. This hybrid method divides the SCC detection into two phases, and dynamically

changes parallelism approaches according to the changed graph properties (Section 3.3). After dividing the detection into

two phases, we further apply the FWCC and Trim2 optimizations to handle the serialization problem of the second phase,

X. Chen et al. / Parallel Computing 78 (2018) 101–114 105

Fig. 3. An example of the compressed sparse row (CSR) format. The graph has 4 SCCs (red, green, blue, purple). The blue and purple SCCs are trvial SCCs

with only one vertex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

exploiting its parallelism (Section 3.4). In addition, as the BFS graph traversal is the most time-consuming part in each

phase, we need to customize the traversal strategies for graphs of different phases. We propose and examine four traversal

strategies and find the best-performing one for each phase (Section 3.5).The following sections elaborate our design and

implememntation by starting with a baseline implementation (Section 3.2) and dummyTXdummy-(ending with technical

details (Section 3.6).

3.2. Baseline implementation

Algorithm 3 illustrates the baseline GPU implementation. At line 2, the Trim procedure (see details in Algorithm 2) is

launched to remove trivial SCCs, thus reducing the workload for the following steps. Pivot-Gen (lines 3&9) is responsible

for generating pivots. A flag for each vertex is used to indicate whether the vertex is picked as a pivot. Then the main loop

is launched. Fwd-Reach (line 5) and Bwd-reach (line 6) are procedures to calculate the forward and backward reachable

sets of the pivots respectively. Update (line 8) is responsible for calculating the SCC (i.e. the intersection of the forward and

backward reachable sets) and updating vertex status. Details of Fwd-Reach and Bwd-reach are explained in Section 3.5 .

An auxiliary data structure color is used to help partitioning. when we partition the graph, we assign a unique color
value to all vertices in the same subgraph; different subgraphs have different color values. Thus, two vertices with different

color values are considered disconnected, even though they have an edge between them in the original graph. Besides, we

use several flags to record the status of each vertex. The removed flag indicates the liveness of a vertex. When an SCC is

identified, instead of detaching each vertex in this SCC from the rest of the graph, we simply set the removed flag of each

vertex, and these vertices are no longer active since then. The visited flag is used to indicate whether the corresponding

vertex has been visited during the forward and backward traversal. If a vertex is both set as forward and backward visited,

it is identified as an element of the SCC that the pivot belongs to. The expanded flag is used to indicate whether the

corresponding vertex has been expanded or not during the traversal, so that we can filter expanded vertices and remove

unnecessary work.

We use the well-known compressed sparse row (CSR) sparse matrix format to store the graph in memory. Fig. 3 provides

a simple example. The column-indices array C is formed from the set of the adjacency lists concatenated into a single array
Algorithm 3 Baseline GPU FB-Trim Algorithm.

1: procedure FB-Trim(G (V, E) , SC C)

2: Trim (G , SC C , remov ed)

3: Pivot-Gen (G , SC C , color, remov ed)

4: repeat

5: Fwd-Reach (G , SC C , color, remov ed , v isited , expand ed)

6: Bwd-Reach (G , SC C , color, remov ed , v isited , expand ed)

7: Trim (G , SC C , remov ed)

8: Update (G , SC C , color, remov ed , v isited , expand ed)

9: Pivot-Gen (G , SC C , color, remov ed , v isited)

10: until no pivot generated

11: end procedure

106 X. Chen et al. / Parallel Computing 78 (2018) 101–114

Fig. 4. Execution time distribution of Barnat’s CUDA implementation.

of m integers (m is the number of edges). The row-offsets array R contains n + 1 integers (n is the number of vertices), and

entry R [i] is the index in C of the adjacency list of the vertex v i .

3.3. The hybrid method

Previous studies [4,7,21] have shown evidence that the major graph property that mostly affects the performance of

SCC detection: the existence of a single giant SCC and a large amount of small-sized SCCs. This irregular property causes

load imbalance and serializes the algorithm when processing small-sized SCCs, making the existing algorithm extremely

inefficient.

To deal with the irregular graph property, we propose a hybrid method, in which the SCC detection problem is de-

composed and solved in two phases with different parallelism approaches. In the first phase (Phase-1), the algorithm pro-

cesses the single giant SCC with all threads, exploiting data-level parallelism. In the second phase (Phase-2), the remaining

small-sized subgraphs are processed in parallel, exploiting task-level parallelism. We exploit different levels of parallelism

to maximize the performance for each phase.

Fig. 4 illustrates the execution time distribution of Barnat’s CUDA SCC detection. For non-small-world graphs, there is

only one nontrivial SCC (i.e. the single giant SCC), so no Phase-2 is needed for these graphs. By contrast, for the small-world

graphs, most of the time is spent on Phase-2 to process the large amount of small-sized SCCs (more than 10 0 0) as Phase-

2 is scarcely parallelized. This serialization is due to the fact that the large amount of remaining small-sized subgraphs

are disconnected to each other. Recursively applying the FB-Trim algorithm to each subgraph only identifies one SCC that

the pivot belongs to, and does not provide further partitioning [7] . Consequently, processing the disconnected subgraphs

is almost serialized. With the serialization problem, the FB-Trim algorithm needs thousands of iterations to finish for most

graphs that exhibit the small-world property. Note that although BFS within each subgraph is still parallelized, it can offer

very limited parallelism since these subgraphs are small.

3.4. Exploiting parallelism in phase-2

To handle the serialization problem in Phase-2, we present FB-Trim-Hybrid that futher optimizes our GPU implementa-

tion with the adoption of the WCC method proposed in Hong’s parallel CPU implementation. The extensions that FB-Trim-

Hybrid applies to FB-Trim are: (1) finding weakly connected components (FWcc), and (2) detecting size-2 SCCs (Trim2).

Both extensions are carefully mapped onto the GPU, and we will show that their overhead is well-controlled.

As mentioned in Section 3.3 , after the giant SCC is identified and removed in Phase-1, Phase-2 is mostly serialized be-

cause of the disconnected small-sized SCCs. To exploit more parallelism in Phase-2, FWcc is utilized to identify weakly

connected components (WCCs) before Phase-2 begins. Since one pivot is selected for each WCC, we have many pivots se-

lected at once and we substantially improve the degree of task-level parallelism. Additionally, to reduce the execution time

of FWcc , we add a Trim2 step to identify and remove size-2 SCCs before FWcc . The algorithms of FWcc and Trim2 are

straightforward and thus not shown in this paper.

Algorithm 4 shows the structure of FB-Trim-Hybrid . In Phase-1 (lines 3 ∼ 11), the single giant SCC is decomposed. The

transition between Phase-1 and Phase-2 occurs when an SCC containing more than 1% of the vertices of the original graph

is identified (this condition often leads to the giant SCC since the rest SCCs are small ones). Next Trim2 is done to remove

size-2 SCCs (line 13). Then WCCs are identified (line 14) to exploit parallelism. In Phase-2 (lines 17 ∼ 23), a large amount of

small-sized SCCs are detected. Our experiments in Section 4 show that FWcc and Trim2 optimizations dramatically increase

the parallelism in Phase-2, leading to significant execution time reduction of Phase-2 (see Fig. 8). Next, we try to optimize

the major operations in each phase.

X. Chen et al. / Parallel Computing 78 (2018) 101–114 107

Algorithm 4 FB-Trim-Hybrid Algorithm.

1: procedure FB-Trim-Hybrid(G (V, E) , SC C)

2: /* Phase 1*/

3: Trim (G , SC C , remov ed)

4: Pivot-Gen (G , SC C , color, remov ed)

5: repeat

6: Fwd-Reach (G , SC C , color, remov ed , v isited , expand ed)

7: Bwd-Reach (G , SC C , color, remov ed , v isited , expand ed)

8: Trim (G , SC C , remov ed)

9: Update (G , SC C , color, remov ed , v isited , expand ed)

10: Pivot-Gen (G , SC C , color, remov ed , v isited)

11: until more than 1% vertices removed

12: Trim (G , SC C , remov ed)

13: Trim2 (G , SC C , remov ed)

14: FWcc (G , color, remov ed , v isited)

15: Pivot-Gen (G , SC C , color, remov ed , v isited)

16: /* Phase 2 */

17: repeat

18: Fwd-Reach (G , SC C , color, remov ed , v isited , expand ed)

19: Bwd-Reach (G , SC C , color, remov ed , v isited , expand ed)

20: Trim (G , SC C , remov ed)

21: Update (G , SC C , color, remov ed , v isited , expand ed)

22: Pivot-Gen (G , SC C , color, remov ed , v isited)

23: until no pivot generated

24: end procedure

3.5. Customizing graph traversal

As listed in Algorithm 3 , the major SCC detection workload is the graph traversal (in Fwd-Reach and Bwd-Reach) which

is implemented as parallel BFS on GPUs. Therefore it is essential to pick an efficient BFS implementation for high perfor-

mance SCC detection. Parallel BFS is a well-explored field [22,23] . Basically two parallelism strategies are utilized on GPUs:

topology-driven and data-driven implementations [24] .

For graph algorithms, the naive topology-driven implementation simply maps each vertex to a thread, and in each it-

eration, the thread stays idle or is responsible to process the vertex depending on whether the corresponding vertex has

been processed or not. It is straightforward to map the topology-driven implementation onto the GPU with no extra data

structure. Harish et al. [25] first developed topology-driven BFS on GPUs. Hong et al. [26] improved it by mapping warps

rather than threads to vertices.

By contrast, the data-driven implementation maintains a worklist which holds the vertices to be processed. In each

iteration, threads are created in proportion to the worklist size (i.e. the number of vertices in the worklist). Each thread

is responsible for processing a certain amount of vertices in the worklist, and no thread is idle. Therefore, the data-driven

implementation is generally more work-efficient than the topology-driven one, but it needs extra overhead to maintain

the worklist. Note that the data-driven implementation still suffers from load imbalance, since vertices may have different

amount of edges to be processed by the corresponding threads. Merrill et al. [16] proposed a hierarchical load balancing

strategy to deal with the problem.

We implement four versions of BFS in our SCC detection: naive topology-driven (topo), topology-driven with load bal-

ancing (topo-lb), naive data-driven (data), and data-driven with load balancing (data-lb). For topo-lb and data-lb ,
we use the same load balancing strategy proposed by Merrill et al. . Algorithm 5 illustrates the naive topology-driven im-
Algorithm 5 Forward-Reach Procedure (topology-driven).

1: procedure Fwd-Reach(G (V, E) , color, remov ed , v isited , expand ed)

2: repeat

3: changed ← false

4: for each vertex v ∈ V in parallel do

5: Fwd-Step (G , v , color, remov ed , v isited , expand ed , changed)

6: end for

7: until changed = false

8: end procedure

108 X. Chen et al. / Parallel Computing 78 (2018) 101–114

Algorithm 6 Forward-Step Kernel (topology-driven).

1: procedure Fwd-Step(G , v , color, remov ed , v isited , expand ed , changed)

2: if ! remov ed(v) and v isitied(v) . f w and ! expanded(v) . f w then

3: expand ed (v) . f w ← true

4: for each vertex w ∈ adj(v) do

5: if ! remov ed(w) and ! v isited(w) . f w and color(w) = color(v) then

6: v isited(w) . f w ← true

7: changed ← true

8: end if

9: end for

10: end if

11: end procedure

plementation of the Fwd-Reach procedure. A flag changed is used to indicate whether all the vertices are colored or not.

This flag is cleared at the beginning of each iteration, and set by one or more threads if any vertex is updated. Once all the

vertices have been visited, the flag remains false and the algorithm finally terminates. Algorithm 6 illustrates the Fwd-Step

kernel operations.

Algorithm 7 shows the naive data-driven Bwd-Reach procedure. It is implemented through worklists. At the beginning

(line 2), generated pivots are pushed into the shared worklist W in . Every worker thread in the system grabs a vertex from

the worklist and starts performing BFS concurrently with respect to other worker threads. The program is finished when all

the worker threads become idle and no work items remain in the worklist. Double buffering [24] is used to avoid copying

the worklist. Algorithm 8 illustrates the Bwd-Step kernel operations. Note that the data structure expanded is not useful

for the data-driven implementation.

Fig. 5 and Fig. 6 compare the performance of using these four BFS implementations in Phase-1 and Phase-2, respectively.

In Fig. 5 , we observe that without load balancing, topo outperforms data in most cases, since data has extra overhead

caused by maintaining the worklist. After applying load balancing, both versions get performance improvement. For most

graphs, topo-lb shows significant speedups (up to 3.4 ×). For Baidu and Wikipedia , data-lb performs better than

topo-lb mainly due to its work-efficiency. On average, topo-lb achieves the best performance among the four, with a

geomean speedup of 1.5 × over topo .
Fig. 5 demonstrates that load balancing can accelerate BFS when processing the largest SCC in Phase-1. However, for

Phase-2 where many small disconnected subgraphs exists, Fig. 6 illustrates that load balancing is not effective since its

overhead exceeds its performance benefits, although some graphs (e.g. Wikigrowth and Wikipedia) can still benefit

from load balancing and get speedup with data-lb .
In summary, according to the observation, we decide to apply topo-lb in Phase-1 and switch to topo in Phase-2.
Algorithm 7 Backward-Reach Procedure (data-driven).

1: procedure Bwd-Reach(G

T (V, E) , color, remov ed , v isited , expand ed)

2: W in ← pi v ots

3: while W in � = ∅ do

4: for each vertex v ∈ W in in parallel do

5: Bwd-Step (G , v , color, remov ed , v isited , W out)

6: end for

7: swap(W in , W out) � Swap the worklists

8: W out ← ∅

9: end while

10: end procedure

Algorithm 8 Backward-Step Kernel (data-driven).

1: procedure Bwd-Step(G , v , color, remov ed , v isited , W out)

2: for each vertex w ∈ adj(v) do

3: if ! remov ed(w) and ! v isited(w) .bw and color(w) = color(v) then

4: v isited(w) .bw ← true

5: W out ← W out ∪ { w } � Atomic push

6: end if

7: end for

8: end procedure

X. Chen et al. / Parallel Computing 78 (2018) 101–114 109

Fig. 5. Performance of topology-driven v.s. data-driven implementations when processing the single giant SCC in Phase-1, all normalized to the topo
implementation.

Fig. 6. Performance of topology-driven v.s. data-driven implementations when processing the small-sized SCCs in Phase-2, all normalized to the topo
implementation. Note that we only show graphs that have many small-sized SCCs to be processed in Phase-2.

3.6. Technical details

Status Update . In real implementation, we use a single data structure status to hold all the flags including removed ,
visited , expanded , is_pivot and so on. Each bit in status represents a distinct flag. Thus, we use bitset operations

instead of boolean operations to update status. This implementation reduces storage space as well as the number of reads

and writes on these flags. Note that our Update routine is also responsible for color assignment according to the results of

forward and backward traversal.

Pivot Generation . Typically, pivots are generated by a pseudo random number generator. However, since multiple sub-

graphs are processed simultaneously in the same CUDA kernel, we need to choose a number of pivots, one for each sub-

graph. Barnat et al. proposed to let all vertices of a subgraph concurrently write their own unique identifiers to a single

memory location [4] . The vertex that wins the competition will be selected as the pivot of its subgraph. Our Pivot-Gen

routine uses this method to generate pivots, and then sets the status (e.g. visited) for the selected pivots.

4. Evaluation

In this section, we evalute our proposed method with various graph datasets (listed in Table 1). We use the R-

MAT [27] graph generator GTGraph [28] to generate rmat-er by using the parameters (0:25; 0:25; 0:25; 0:25). We choose

kron21 from the 10th DIMACS Implementation Challenge (generated by the kronecker generator). We also pick real-world

graphs from the University of Florida Sparse Matrix Collection [29] , the SNAP database [30] , and the Koblenz Network Collec-

tion [31] . These graphs are also used in previous work [7,21,32] . In summary, we use 2 synthetic graphs and 14 real-world

graphs for our evaluation. The graphs vary widely in size, degree distribution, density of local subgraphs and application

domain.

110 X. Chen et al. / Parallel Computing 78 (2018) 101–114

Table 1

Suite of benchmark graphs. ∗ indicates that the original graph is undirected; we randomly assign a direction for each edge with 50% probability for

each direction.

Graph # Vertices # Edges Largest SCC Size Avg. deg. Description

rmat-er 4,194,304 4,194,304 4,194,304 10.0 Synthetic random graph

kron21 ∗ 2,097,152 91,042,010 1,180,037 43.4 Synthetic random graph

Hamrle3 1,447,360 5,514,242 1,447,360 3.8 Circuit simulation

cage14 1,505,785 27,130,349 1,505,785 18.0 DNA electrophoresis

cage15 5,154,859 99,199,551 5,154,859 19.2 DNA electrophoresis

Freescale 2,999,349 23,042,677 2,888,522 7.7 Circuit simulation

Flickr 2,302,925 33,140,017 1,605,184 14.4 Connection of Flickr users

Google 875,713 5,105,039 434,818 5.8 Web graph from Google

WikiGrowth 1,870,709 39,953,145 1,629,321 21.4 English Wikipedia with edge arrival times

Youtube 1,138,499 4,942,297 509,245 4.3 Youtube users and their connections

Baidu 2,141,300 17,794,839 609,905 8.3 Chinese online encyclopedia Baidu

LiveJ 4,847,571 68,993,773 3,828,682 14.2 LiveJournal online social network

Pokec 1,632,803 30,622,564 1,304,537 18.8 Pokec online social network

Wikipedia 3,148,440 39,383,235 2,104,115 12.5 Links in Wikipedia pages

Twitter ∗ 21,297,772 265,025,809 10,351,983 12.4 Connection of Twitter users

Web-UK ∗ 18,520,343 298,113,762 14,479,249 16.1 Web crawl of .uk domain

Fig. 7. Performance of the SCC detection implementations, all normalized to the sequential Tarjan’s algorithm.

4.1. Experiment setup

We compare 4 implementations including (1) Tarjan : Tarjan’s serial algorithm implemented in [4] , (2) OpenMP : Hong’s

OpenMP implementation [7] , (3) Barnat : Barnat’s CUDA implementation [4] , (4) Hybrid : our proposed GPU implemen-

tation FB-Trim-Hybrid. We conduct the experiments on the NVIDIA K80 GPU with CUDA Toolkit 8.0 release. Tarjan and

OpenMP is executed on the Intel Xeon E5 26790V2 2.30 GHz CPU with 12 cores. We launch 12 threads for OpenMP since

this is the best performing configuration as we have evaluated. We use gcc and nvcc with the -O3 optimization option for

compilation along with -arch = sm_35 when compiling for the GPU. We execute all the benchmarks 10 times and collect

the average execution time to avoid system noise. Timing is only performed on the computation part of each program. For

all the GPU implementations, the input/output data transfer time (usually takes 10%-15% of the entire program execution

time) is excluded.

4.2. Overall performance

Fig. 7 compares the performance of our proposed FB-Trim-Hybrid method with Tarjan , OpenMP and Barnat . On av-

erage, our implementation achieves the best performance among the four methods. Hybrid obtains a geomean speedup of

5.6 × compared to the Tarjan’s serial one, while OpenMP gets 3.8 × performance improvement. Compared to OpenMP , our

method is 47% faster. This speedup over OpenMP is reasonable because the CPU has a much larger last level cache which

can better capture locality than that on the GPU, although the GPU has higher throughput and memory bandwidth.

As mentioned in Section 2.2 , Barnat gets speedup for the first five graphs (because these graphs have only one nontriv-

ial SCCs), but it is much slower than Tarjan on average. By contrast, our method consistently works better than Tarjan
and Barnat . For the first five graphs, Hybrid is faster than Barnat thanks to the optimized BFS implementation (see de-

tails in Section 3.5), while for the rest small-world graphs, our method outperforms Tarjan and Barnat mainly because of

the much higher parallelism exploited by the WCC method. (see Section 3.4). Table 2 shows that FWcc substantially reduces

the number of iterations required to complete the SCC detection. For small-world graphs, without FWcc , Barnat needs

X. Chen et al. / Parallel Computing 78 (2018) 101–114 111

Fig. 8. Execution time breakdown of our proposed FB-Trim-Hybrid implementation. Note that we only show graphs that have many small-sized nontrivial

SCCs.

Table 2

The number of iterations required to complete SCC detection for each graph. The third column

lists the number of nontrivial SCCs in each graph.

Graphs Barnat Hybrid # nontriv.

rmat-er 1 1 1

kron21 1 1 1

Hamrle3 1 1 1

cage14 1 1 1

cage15 1 1 1

Freescale 55,084 2 55084

Flickr 28,804 6 58636

Google 5347 14 12874

WikiGrowth 2702 4 2835

Youtube 10,752 6 11370

Baidu 9371 5 22282

LiveJ 12,226 5 23456

Pokec 1080 3 2094

Wikipedia 2559 5 2666

Twitter 18,223 5 18491

Web-UK 81,638 31 56119

thousands of iterations to finish since its Phase-2 is almost sequential. By contrast, our method terminates within several

iterations. In general, our GPU method is more practical and efficient than the existing parallel implementations.

4.3. Execution time breakdown

To better understand the performance impact of our optimizations, we breakdown the execution time into three parts:

Phase-1, FWcc + Trim2 and Phase-2, shown in Fig. 8 . As expected, since FWcc exploits more parallelism, execution time spent

in Phase-2 is significantly reduced, and Phase-2 does not dominate the total execution time any more (see Fig. 4 for compar-

ison). We find that FWcc increases the Phase-2 performance by 9.0 × , and adding Trim2 further increases the performance

by 1.4 × .

Meanwhile, with refined BFS traversal strategies, the Phase-1 performance is also improved. Besides, we parallelize our

FWcc implementation on the GPU and ensure its low overhead. To sum up, orchestrating all the three parts with customized

optimizations transforms into the final performance improvement.

4.4. Hybrid vs. OpenMP

We note that our method outperforms OpenMP for all evaluated graphs except Wikipedia and WikiGrowth , so we

look into the execution time breakdown of OpenMP and Hybrid . We notice that the performance gap is mainly due to

the fact that OpenMP spends less time on Phase-1 than Hybrid does (see Fig. 9 (a)). By examining the BFS traversal of the

two graphs, we find that both graphs have a long tail that needs processing in the last tens or hundreds of iterations (see

Fig. 9 (b)). In the long tail part, the frontier size (the number of active vertices) is small but the traversal needs hundreds

rounds of iterations to terminate. Using the topo-lb strategy cannot efficiently process the long tail part, as it needs to

112 X. Chen et al. / Parallel Computing 78 (2018) 101–114

Fig. 9. (a) Execution time of Phase-1 of OpenMP and Hybrid for Wikipedia and WikiGrowth . The bars Hybrid-M shows the execution time after

applying the mixed top-down and bottom-up strategy in our hybrid implementation. (b) The two graphs both have a long tail with tens or hundreds of

iterations.

Fig. 10. (a) Performance of the SCC detection with varied dataset size (1M to 16M vertices); (b) Performance of the SCC detection with varied graph

density; all normalized to the sequential Tarjan’s algorithm.

scan through all the vertices in every iteration. Beamer et al. proposed a mixed top-down and bottom-up approach [22] to

deal with the long-tail problem on the CPU. We apply a similar mixed traversal strategy (instead of topo-lb) for the two

graphs on the GPU. The bars Hybrid-M in Fig. 9 (a) shows that after applying the mixed strategy, the execution time of

the Phase-1 is largely reduced (and close to that in OpenMP).

4.5. Sensitivity study

We first evaluate the sensitivity of our method when changing the size of the input datasets. In this experiment, we

change the graph size from 1M to 16M vertices, with a fixed density (average degree) of 10. Fig. 10 (a) shows the execution

time speedup over the Tarjan’s sequential method. It is clear that our method consistently outperforms the OpenMP and

Barnat implementations as the input scale increases. For OpenMP and Hybrid , the performance speedup increases as the

size increase from 1M to 8M. This is as expected since larger datasets would benefit more from parallel implementations.

The speedup drops a little bit when the size goes to 16M, possibly due to the graph topology, but Hybrid still achieves

a significant speedup of 25.8 × over Tarjan . By contrast, Barnat shows limited performance superiority compared to

OpenMP . Note that we focus on single-GPU implementation in this paper, while our work can be extended to multi-GPU

machines when the graph sizes exceed a single GPU’s memory.

We also evaluate the effect of graph density on performance. Fig. 10 (b) illustrates how the performance changes as the

graph density increases. In this experiment, we change the graph density from 10 to 60, with a fixed graph size of 1M

vertices. We observe that Hybrid still consistently outperforms Barnat . This performance gap is almost unchanged as

the graph becomes denser. OpenMP exhibits higher performance speedup with denser input graphs, while the speedups

of the two GPU implementations drop as the density increases. This is possibly due to the much larger cache size of the

CPU. Since the working set size is proportional to the graph density, GPUs are likely to suffer higher degree of memory

divergence and cache thrashing with limited on-chip cache size. The observation suggests us optimize cache behavior so as

to further improve the performance of GPU SCC detection. Note that real-world graphs are usually sparse graphs, e.g. the

largest density of the real-world graph instances used in our experiments is 21, and our GPU method consistantly achieves

better performance than the CPU parallel implementation for real-world sparse graphs.

X. Chen et al. / Parallel Computing 78 (2018) 101–114 113

5. Related work

Parallel SCC detection is an important graph analysis algorithm that has been intensively studied previously. As men-

tioned, Hong et al. were the first to use the WCC method to handle small-world graphs, and Barnat et al. were the first

to implement FB-Trim algorithm on GPUs. Inspired by Hong’s work, Slota et al. [21] proposed a Multistep strategy to

deal with small-world graphs on CPUs. Their approach combines BFS and coloring-based methods and uses them in differ-

ent algorithm steps. Slota et al. [32] also implemented their Multistep method on GPUs to handle the large amount of

small-sized SCCs in the real-world graphs. Instead of using coloring algorithm, our GPU implementation imports Hong’s WCC

method to handle this problem. More importantly, our method enables the adoption of different graph traversal strategies

for different algorithm phases.

Many other graph algorithms have been developed on GPUs. Hong et al. [26] proposed a warp-centric method that maps

warps rather than threads to vertices to deal with load imbalance. Merrill et al. [16] developed a data-driven BFS on GPUs.

They employed (1) prefix sum to reduce atomic operations and (2) dynamic load balancing to deal with power-law graphs.

These two techniques are both applicable to our implementation, while our work focuses more on the algorithm-specific

refinement, e.g. hybrid parallelism that alleviates side effects of graph irregularity. All the work demonstrates that, with

careful mapping and optimizations, graph algorithms can get substantial performance boost on GPUs. Our work further

enhances the conclusion of previous practices, while we show the importance of both algorithm-specific and architecture-

specific optimizations for graph analytics problems.

This article is an extension of our previous workshop paper [33] . We add a detailed analysis of the graph properties and

refine the algorithm description. We also enhance the evaluation with a more solid experimental setup (e.g. larger datasets)

and more comprehensive performance comparison, leading to a deeper and clearer understanding of the experimental re-

sults.

6. Conclusion

SCC detection is an important graph algorithm that has been applied in many application domains. Existing GPU im-

plementations cannot efficiently process different types of graphs because the implementations are not aware of the graph

properties. In this paper, we demonstrate that it is of great importance to understand the graph properties for accelerating

SCC detection. There are two types of properties: (1) the static property, i.e. the small-world and power-law property which

leads to skewed SCC sizes, and (2) the dynamic property, i.e. the dynamically changed graph structure due to the intrinsic

nature of the SCC detection algorithm.

To deal with the static property, we propose a hybrid method that divides the algorithm into two phases (for processing

the single giant SCC and many small-sized nontrivial SCCs respectively) and utilizes the most suitable parallelism approach

for each phase. To deal with the dynamic property, we customize the graph traversal strategies to adjust to the runtime

graph structure. Experiments with different types of synthetic and real-world graphs shows that the proposed method

largely outperforms existing GPU implementations, and is applicable to different types of graphs. Our work further helps

the graph analytics community to better understand graph algorithm acceleration on modern massively parallel processors.

Acknowledgment

We thank the anonymous reviewers for the insightful comments and suggestions. This work is partly supported by the

National Natural Science Foundation of China (NSFC) No. 61502514, No. 61402488, and No. 61602501, and the National Key

Research and Development Program of China under grant No. 2016YFB020 040 0.

References

[1] R. Tarjan , Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146–160 .
[2] L. Fleischer , B. Hendrickson , A. Pinar , On identifying strongly connected components in parallel, in: Proceedings of the 15th IPDPS Workshops, IPDPS

’00, Springer-Verlag, London, UK, UK, 2000, pp. 505–511 .
[3] W. McLendon III , B. Hendrickson , S.J. Plimpton , L. Rauchwerger , Finding strongly connected components in distributed graphs, J. Parallel Distributed

Comput. (JPDC) 65 (8) (2005) 901–910 .
[4] J. Barnat , P. Bauch , L. Brim , M. Ceska , Computing strongly connected components in parallel on cuda, in: Proceedings of the 25th IEEE International

Parallel & Distributed Processing Symposium (IPDPS), IPDPS ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 544–555 .

[5] A. Broder , R. Kumar , F. Maghoul , P. Raghavan , S. Rajagopalan , R. Stata , A. Tomkins , J. Wiener , Graph structure in the web, Comput. Networks 33 (1–6)
(20 0 0) 309–320 .

[6] A. Mislove , M. Marcon , K.P. Gummadi , P. Druschel , B. Bhattacharjee , Measurement and analysis of online social networks, in: Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, IMC ’07, ACM, New York , NY, USA, 2007, pp. 29–42 .

[7] S. Hong , N.C. Rodia , K. Olukotun , On fast parallel detection of strongly connected components (scc) in small-world graphs, in: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis (SC), SC ’13, ACM, New York, NY, USA, 2013 . 92:1–92:11

[8] R. Kumar , J. Novak , A. Tomkins , Structure and evolution of online social networks, in: Proceedings of the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), KDD ’06, ACM, New York, NY, USA, 2006, pp. 611–617 .
[9] R. Hojati , R.K. Brayton , R.P. Kurshan , Bdd-based debugging of design using language containment and fair ctl, in: Proceedings of the 5th International

Conference on Computer Aided Verification, CAV ’93, Springer-Verlag, London, UK, UK, 1993, pp. 41–58 .
[10] S.J. Kazemitabar , H. Beigy , Automatic discovery of subgoals in reinforcement learning using strongly connected components, in: Proceedings of the

15th International Conference on Advances in Neuro-information Processing - Volume Part I, ICONIP’08, Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 829–834 .

http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0010

114 X. Chen et al. / Parallel Computing 78 (2018) 101–114

[11] A . Xie , P.A . Beerel , Implicit enumeration of strongly connected components and an application to formal verification, Trans. Comp.-Aided Des. Integ.
Cir. Sys. 19 (10) (2006) 1225–1230 .

[12] A. Pothen , C.-J. Fan , Computing the block triangular form of a sparse matrix, ACM Trans. Math. Softw. (TOMS) 16 (4) (1990) 303–324 .
[13] J.H. Reif , Depth-first search is inherently sequential, Inf. Process Lett. 20 (5) (1985) 229–234 .

[14] NVIDIA, 2015, CUDA C Programming Guide v7.0.
[15] M. Stuhl, Computing Strongly Connected Components With CUDA. Master Thesis, Masaryk University, 2013.

[16] D. Merrill , M. Garland , A. Grimshaw , Scalable gpu graph traversal, in: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP), PPoPP ’12, ACM, New York, NY, USA, 2012, pp. 117–128 .
[17] A . McLaughlin , D.A . Bader , Scalable and high performance betweenness centrality on the gpu, in: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), SC ’14, IEEE Press, Piscataway, NJ, USA, 2014, pp. 572–583 .
[18] A. Davidson , S. Baxter , M. Garland , J.D. Owens , Work-efficient parallel gpu methods for single-source shortest paths, in: Proceedings of the IEEE 28th

International Parallel and Distributed Processing Symposium (IPDPS), 2014, pp. 349–359 .
[19] G.M. Slota , S. Rajamanickam , K. Madduri , Parallel graph coloring for manycore architectures, in: Proceedings of the IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2016, pp. 1–10 .
[20] P. Li , X. Chen , Z. Quan , J. Fang , H. Su , T. Tang , C. Yang , High performance parallel graph coloring on gpgpus, in: Proceedings of the 30th IPDPS Workshop,

IPDPSW ’16, 2016, pp. 1–10 .

[21] G.M. Slota , S. Rajamanickam , K. Madduri , Bfs and coloring-based parallel algorithms for strongly connected components and related problems, in:
Proceedings of IEEE 28th International Parallel and Distributed Processing Symposium (IPDPS), 2014, pp. 550–559 .

[22] S. Beamer , K. Asanovi ́c , D. Patterson , Direction-optimizing breadth-first search, in: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), SC ’12, IEEE Computer Society Press, Los Alamitos, CA, USA, 2012 . 12:1–12:10

[23] V. Agarwal , F. Petrini , D. Pasetto , D.A. Bader , Scalable graph exploration on multicore processors, in: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), SC ’10, IEEE Computer Society, Washington, DC, USA, 2010,

pp. 1–11 .

[24] R. Nasre , M. Burtscher , K. Pingali , Data-driven versus topology-driven irregular computations on gpus, in: Proceedings of the 27th IEEE International
Parallel Distributed Processing Symposium (IPDPS), IPDPS ’13, 2013, pp. 463–474 .

[25] P. Harish , P.J. Narayanan , Proceedings of the 14th international conference high performance computing (hiPC), in: Ch. Accelerating Large Graph Algo-
rithms on the GPU Using CUDA, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 197–208 .

[26] S. Hong , S.K. Kim , T. Oguntebi , K. Olukotun , Accelerating cuda graph algorithms at maximum warp, in: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP), PPoPP ’11, ACM, New York, NY, USA, 2011, pp. 267–276 .

[27] D. Chakrabarti , Y. Zhan , C. Faloutsos , R-MAT: A recursive model for graph mining, in: SDM, SIAM, 2004 .

[28] K. Madduri, D.A. Bader, 2006,. GTgraph: A suite of synthetic graph generators. http://www.cse.psu.edu/madduri/software/GTgraph/ .
[29] The University of Florida Sparse Matrix Collection, 2011. URL http://www.cise.ufl.edu/research/sparse/matrices/ .

[30] J. Leskovec, 2013,. Snap: Stanford network analysis platform http://snap.stanford.edu/data/index.html .
[31] Koblenz network collection, 2013. URL http://konect.uni-koblenz.de .

[32] G.M. Slota , S. Rajamanickam , K. Madduri , High-performance graph analytics on manycore processors, in: Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2015, pp. 17–27 .

[33] P. Li , X. Chen , J. Shen , J. Fang , T. Tang , C. Yang , High performance detection of strongly connected components in sparse graphs on gpus, in: In the

Proceedings of the International Workshop on Programming Models and Applications for Multicores and Manycores, in conjunction with the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), PMAM ’17, 2017, pp. 1–10 .

http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0025
http://www.cse.psu.edu/madduri/software/GTgraph/
http://www.cise.ufl.edu/research/sparse/matrices/
http://snap.stanford.edu/data/index.html
http://konect.uni-koblenz.de
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30183-7/sbref0027

	Orchestrating parallel detection of strongly connected components on GPUs
	1 Introduction
	2 Background and motivation
	2.1 Parallel SCC detection
	2.2 Existing GPU implementations and the limitations

	3 Design and implementation
	3.1 The design overview
	3.2 Baseline implementation
	3.3 The hybrid method
	3.4 Exploiting parallelism in phase-2
	3.5 Customizing graph traversal
	3.6 Technical details

	4 Evaluation
	4.1 Experiment setup
	4.2 Overall performance
	4.3 Execution time breakdown
	4.4 Hybrid vs. OpenMP
	4.5 Sensitivity study

	5 Related work
	6 Conclusion
	 Acknowledgment
	 References

