Performance Engineering of Software Systems

LECTURE 3

Bit Hacks

Srini Devadas
September 15, 2022

Binary Representations

Binary Representation

Let $x=\left\langle x_{w-1} x_{w-2} \ldots x_{0}\right\rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$
x=\sum_{k=0}^{w-1} x_{k} 2^{k}
$$

Binary Representation

Let $x=\left\langle x_{w-1} x_{w-2} \ldots x_{0}\right\rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$
x=\sum_{k=0}^{w-1} x_{k} 2^{k}
$$

For example, the 8 -bit word Ob10101100 represents the unsigned value $172=4+8+32+128$.

Binary Representation

Let $x=\left\langle x_{w-1} x_{w-2} \ldots x_{0}\right\rangle$ be a w-bit computer word. The unsigned integer value stored in x is The prefix $0 b$

$$
x=\sum_{k=0}^{w-1} x_{k} 2^{k} . \quad \begin{gathered}
\text { designates a } \\
\text { Boolean constant. }
\end{gathered}
$$

For example, the 8-bit word 0b10101100 represents the unsigned value $172=4+8+32+128$.

Binary Representation

Let $x=\left\langle x_{w-1} x_{w-2} \ldots x_{0}\right\rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$
x=\sum_{k=0}^{w-1} x_{k} 2^{k}
$$

For example, the 8-bit word Ob10101100 represents the unsigned value $172=4+8+32+128$.

The signed integer (two's complement) value stored in x is

$$
x=\left(\sum_{k=0}^{w-2} x_{k} 2^{k}\right)-x_{w-1} 2^{w-1}
$$

For example, the same 8-bit word 0b10101100
represents the signed value $-84=4+8+32-128$.

Binary Representation

Let $x=\left\langle x_{w-1} x_{w-2} \ldots x_{0}\right\rangle$ be a w-bit computer word. The unsigned integer value stored in x is

$$
x=\sum_{k=0}^{w-1} x_{k} 2^{k}
$$

For example, the 8-bit word Ob10101100 represents the unsigned value $172=4+8+32+128$.

The signed integer (two's complement) value stored in x is

$$
x=\left(\sum_{k=0}^{w-2} x_{k} 2^{k}\right)-x_{w-1} 2^{w-1}
$$

For example, the same 8-bit word 0b10101100 represents the signed value $-84=4+8+32-128$.

Two's Complement

We have $0 b 00 . . .0=0$.
What is the value of $x=0 b 11 \ldots 1$?

$$
\begin{aligned}
x & =\left(\sum_{k=0}^{w-2} x_{k} 2^{k}\right)-x_{w-1} 2^{w-1} \\
& =\left(\sum_{k=0}^{w-2} 2^{k}\right)-2^{w-1} \\
& =\left(2^{w-1}-1\right)-2^{w-1} \\
& =-1
\end{aligned}
$$

Complementary Relationship

Important identity

Since we have $\sim x+x=-1$, it follows that

$$
\sim x+1=-x .
$$

Complementary Relationship

Important identity

Since we have $\sim x+x=-1$, it follows that

$$
\sim x+1=-x .
$$

Example

$$
\begin{aligned}
x & =0 b 0001100000011100 \\
\sim x & =0 b 1110011111100011 \\
-x & =0 b 1110011111100100
\end{aligned}
$$

Complementary Relationship

Important identity

Since we have $\sim x+x=-1$, it follows that

$$
\sim x+1=-x .
$$

Example

$$
\begin{aligned}
x & =0 b 0001100000011100 \\
\sim x & =0 b 1110011111100011 \\
-x & =0 b 1110011111100100
\end{aligned}
$$

DIGI-COMP II

Binary and Hexadecimal

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

Binary and Hexadecimal

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

To translate from hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

Binary and Hexadecimal

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

To translate from hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

Example: 0xDEC1DE2CODE4F00D is

Binary and Hexadecimal

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
The prefix 0x	01	5	13	1101	D
Tesignates a dex constant.	10	6	14	1110	E
he	7	15	1111	F	

To translate m hex to binary, translate each hex digit to its binary equiva ent, and concatenate the bits.
Example: 0xDEC1DE2CODE4F00D is

Binary and Hexadecimal

Decimal	Binary	Hex	Decimal	Binary	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

To translate from hex to binary, translate each hex digit to its binary equivalent, and concatenate the bits.

Example: 0xDEC1DE2CODE4FOOD is

Elementary Bit Hacks

C Bitwise Operators

Operator	Description
$\&$	AND
I	OR
\wedge	XOR (exclusive OR)
\sim	NOT (one's complement)
\ll	shift left
\gg	shift right

Examples (8-bit word)

$$
\begin{aligned}
& A=0 b 10110011 \\
& B=0 b 01101001
\end{aligned}
$$

$A \& B=0 b 00100001$
$A \mid B=0 b 11111011$
$\sim A=0 b 01001100$
A >> $3=0 b 00010110$
$A^{\wedge} B=0 b 11011010$
$A \ll 2=0 b 11001100$

Set the kth Bit

Problem

Set kth bit in a word x to 1 .
Idea
Shift and OR.

$$
x \mid(1 \ll k) ;
$$

Set the kth Bit

Problem

Set kth bit in a word x to 1.
Idea
Shift and OR.
truth table for OR

x	y	x
0	0	0
0	1	1
1	0	1
1	1	1

Example

```
k = 7
```

x	1011110101101101
$1 \ll k$	0000000010000000
$x \mid(1 \ll k)$	1011110111101101

Set the kth Bit

Problem

Set kth bit in a word x to 1.
Idea
Shift and OR.
truth table for OR

| x | y | x |
| :---: | :---: | :---: |$|y|$| y | |
| :---: | :---: |
| 0 | 0 |
| 0 | 1 |
| 1 | 0 |
| 1 | 1 |

Example

```
k = 7
```

x	1011110101101101
$1 \ll k$	0000000010000000
$x \mid(1 \ll k)$	1011110111101101

Set the kth Bit

Problem

Set kth bit in a word x to 1.
Idea
Shift and OR.
truth table for OR

x	y	x
0	0	0
0	1	1
1	0	1
1	1	1

Example

```
k = 7
```

x	1011110101101101
$1 \ll k$	0000000010000000
$x \mid(1 \ll k)$	1011110111101101

Clear the kth Bit

Problem

Clear the $k t h$ bit in a word x .
Idea
Shift, complement, and AND.

Clear the kth Bit

Problem

Clear the $k t h$ bit in a word x .
Idea
Shift, complement, and AND.

$$
x \& \sim(1 \ll k) ;
$$

truth table for AND

x	y	$x \& y$
0	0	0
0	1	0
1	0	0
1	1	1

Example

$\mathrm{k}=7$

x	1011110111101101
$1 \ll k$	0000000010000000
$\sim(1 \ll k)$	1111111101111111
$x \& \sim(1 \ll k)$	1011110101101101

Clear the kth Bit

Problem

Clear the $k t h$ bit in a word x .
Idea
Shift, complement, and AND.

$$
x \& \sim(1 \ll k) ;
$$

truth table for AND

x	y	$x \& y$
0	0	0
0	1	0
1	0	0
1	1	1

Example

$\mathrm{k}=7$

x	1011110111101101
$1 \ll k$	0000000010000000
$\sim(1 \ll k)$	1111111101111111
$x \& \sim(1 \ll k)$	1011110101101101

Clear the kth Bit

Problem

Clear the $k t h$ bit in a word x .
Idea
Shift, complement, and AND.

$$
x \& \sim(1 \ll k) ;
$$

truth table for AND

x	y	$x \& y$
0	0	0
0	1	0
1	0	0
1	1	1

Example

$\mathrm{k}=7$

x	1011110111101101
$1 \ll k$	0000000010000000
$\sim(1 \ll k)$	1111111101111111
$x \& \sim(1 \ll k)$	1011110101101101

Toggle the kth Bit

Problem

Flip the kth bit in a word x .
Idea
Shift and XOR.

```
x^(1<< k);
```


Toggle the kth Bit

Problem

Flip the kth bit in a word x.
Idea
Shift and XOR.
truth table for XOR

x	y	$x^{\wedge} y$
0	0	0
0	1	1
1	0	1
1	1	0

Example ($0 \rightarrow 1$)
$\mathrm{k}=7$

x	1011110101101101
$1 \ll k$	0000000010000000
$x^{\wedge}(1 \ll k)$	1011110111101101

Toggle the kth Bit

Problem

Flip the kth bit in a word x.
Idea
Shift and XOR.
truth table for XOR

x	y	$x^{\wedge} y$
0	0	0
0	1	1
1	0	1
1	1	0

Example ($0 \rightarrow 1$)
$\mathrm{k}=7$

x	1011110101101101
$1 \ll k$	0000000010000000
$x^{\wedge}(1 \ll k)$	1011110111101101

Toggle the kth Bit

Problem

Flip the kth bit in a word x.
Idea
Shift and XOR.
truth table for XOR

x	y	$x^{\wedge} y$
0	0	0
0	1	1
1	0	1
1	1	0

Example ($0 \rightarrow 1$)
$\mathrm{k}=7$

x	1011110101101101
$1 \ll k$	0000000010000000
$x^{\wedge}(1 \ll k)$	1011110111101101

Toggle the kth Bit

Problem

Flip the kth bit in a word x.
Idea
Shift and XOR.
truth table for XOR

x	y	$x^{\wedge} y$
0	0	0
0	1	1
1	0	1
1	1	0

Example ($1 \rightarrow 0$)
$\mathrm{k}=7$

x	1011110111101101
$1 \ll k$	0000000010000000
$x^{\wedge}(1 \ll k)$	1011110101101101

Extract a Bit Field

Problem

Extract a bit field from a word x .
Idea
Mask and shift.
(x \& mask) >> shift;

Extract a Bit Field

Problem

Extract a bit field from a word x .
Idea
Mask and shift.
(x \& mask) >> shift;

Example
 shift $=7$

x	1011110101101101
mask	0000011110000000
x \& mask	0000010100000000
$(x \&$ mask $) \gg$ shift	0000000000001010

Set a Bit Field

Problem

Set a bit field in a word x to a value y. Idea
Invert mask to clear, and OR the shifted value.

$$
\text { (x \& ~mask) | }(y \ll \text { shift })
$$

Set a Bit Field

Problem

Set a bit field in a word x to a value y. Idea
Invert mask to clear, and OR the shifted value.

$$
(x \& \sim m a s k) \mid(y \ll \text { shift }) ;
$$

Example

shift $=7$

x	1011110101101101
y	0000000000000011
mask	0000011110000000
$x \& \sim m a s k$	1011100001101101
$y \ll$ shift	0000000110000000
$(x \& \sim m a s k) \mid(y \ll$ shift $)$	1011100111101101

Set a Bit Field Dangerously

Problem

Set a bit field in a word x to a value y. Idea
Invert mask to clear, and OR the shifted value.
(x \& ~mask) | (y << shift);

Dangerous example

shift = 7

x	1000110101101101
y	0000000000100011
mask	0000011110000000
$x \& \sim m a s k$	1000100001101101
$y \ll$ shift	0001000110000000
$(x \& \sim m a s k) \mid(y \ll$ shift $)$	1001100111101101

Set a Bit Field Safely

Problem

Set a bit field in a word x to a value y safely.

Idea

Invert mask to clear, and OR the masked shifted value.
(x \& ~mask) | ((y << shift) \& mask);

Dangerous example (no longer)

shift = 7

x	1000110101101101
y	0000000000100011
mask	0000011110000000
$x \& \sim m a s k$	1000100001101101
$((y \ll$ shift $) \&$ mask $)$	0000000110000000
$(x \& \sim m a s k) \mid((y \ll$ shift $) \&$ mask $)$	1000100111101101

SPEED LIMIT

SWAPPING

Ordinary Swap

Problem

Swap two integers x and y.

$$
\begin{aligned}
& \mathrm{t}=\mathrm{x} ; \\
& \mathrm{x}=\mathrm{y} ; \\
& \mathrm{y}=\mathrm{t} ;
\end{aligned}
$$

Ordinary Swap

Problem

Swap two integers x and y.

$$
\begin{aligned}
& t=x ; \\
& x=y ; \\
& y=t ;
\end{aligned}
$$

Example

x	10111101	10111101	00101110	10111101
y	00101110	00101110	00101110	00101110
t		10111101	10111101	10111101

No-Temp Swap

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& x=x \wedge \wedge y ; \\
& y=x \wedge \wedge ; \\
& x=x^{\wedge} y ;
\end{aligned}
$$

No-Temp Swap

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x} \wedge \wedge \\
& \mathrm{y}=\mathrm{y} ; \\
& \mathrm{x}=\mathrm{x} \wedge \\
& \mathrm{y} ; \mathrm{y} ;
\end{aligned}
$$

Example

x	10111101			
y	00101110			

No-Temp Swap

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& x=x^{\wedge} y ; \\
& y=x \wedge \\
& x=x^{\wedge} y ;
\end{aligned}
$$

Example

x	10111101	10010011		
y	00101110	00101110		

No-Temp Swap

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& x=x^{\wedge} y ; \\
& y=x \wedge \\
& x=x^{\wedge} y
\end{aligned}
$$

Example

x	10111101	10010011	10010011	
y	00101110	00101110	10111101	

No-Temp Swap

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& x=x^{\wedge} y ; \\
& y=x \wedge \\
& x=x^{\wedge} y
\end{aligned}
$$

Example

x	10111101	10010011	10010011	00101110
y	00101110	00101110	10111101	10111101

No-Temp Swap

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& x=x \wedge \wedge y ; \\
& y=x \wedge y ; \\
& x=x \wedge y ;
\end{aligned}
$$

Example

x	10111101	10010011	10010011	00101110
y	00101110	00101110	10111101	10111101

Why it works

XOR is its own inverse:
$\left(x^{\wedge} y\right) \wedge y \Rightarrow x$

x	y	$x^{\wedge} y$	$\left(x^{\wedge} y\right)^{\wedge} y$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

No-Temp Swap (Why it works)

Problem

Swap x and y without using a temporary.

$$
\begin{aligned}
& x=x \wedge \wedge y ; \\
& y=x \wedge \wedge ; \\
& x=x^{\wedge} y ;
\end{aligned}
$$

$$
\begin{aligned}
& x=x o l d \wedge \text { yold; } \\
& y=x \wedge \text { yold }=(\text { xold } \wedge \text { yold }) \wedge \text { yold }=\text { xold; } \\
& x=x \wedge y=(\text { xold } \wedge \text { yold }) \wedge \text { xold }=\text { yold; }
\end{aligned}
$$

Avoiding Unpredictable Code BRANCHES

SPEED LIMIT

Minimum of Two Integers

Problem

Find the minimum r of two integers x and y.

```
if (x < y)
    r = x;
else
    r = y;
```


Performance

A mispredicted branch empties the processor pipeline.

Caveat

The compiler is usually smart enough to optimize away the unpredictable branch, but maybe not.

"Meltdown" and "Spectre:" Every modern processor has unfixable security flaws

Immediate concern is for Intel chips, but everyone is at risk.
PETER BRIGHT - 1/3/2018, 7:30 PM

Windows, Linux, and macOS have all received security patches that significantly alter how the operating systems handle virtual memory in order to protect against a hitherto undisclosed flaw. This is more than a little notable; it has been clear that Microsoft and the Linux kernel developers have been informed of some non-public security issue and have been rushing to fix it. But nobody knew quite what the problem was, leading to lots of speculation and experimentation based on prereleases of the patches.
Now we know what the flaw is. And it's not great news, because there are in fact two related families of flaws with similar impact, and only one of them has any easy fix.

The flaws have been named Meltdown and
Spectre. Meltdown was independently discovered by three groups-researchers from the Technical University of Graz in Austria, German security firm Cerberus Security, and Google's Project Zero. Spectre was discovered independently by Project Zero and independent researcher Paul Kocher.

At their heart, both attacks take advantage of the fact that processors execute instructions speculatively. All modern processors perform speculative execution to a greater or lesser extent; they'll assume that, for example, a given condition will be true and execute instructions accordingly. If it later turns out that the condition was false, the speculatively executed instructions are discarded as if they had no effect.

However, while the discarded effects of this speculative execution don't alter the outcome of a program, they do make changes to the lowest level architectural features of the processors. For example, speculative execution can load data into cache even if it turns out that the data should never have been loaded in the first place. The presence of the data in the cache can then be detected, because accessing it will be a little bit quicker than if it weren't cached. Other data

No-Branch Minimum

Problem

Find the minimum of two integers x and y without using a branch.

$$
y^{\wedge}\left(\left(x^{\wedge} y\right) \&-(x<y)\right) ;
$$

Why it works

- The C language represents the Booleans true and FALSE with the integers 1 and 0 , respectively.
- If $x<y$, then $-(x<y)=-1$, which is all 1 's in two's complement representation. Therefore, we have $y \wedge((x \wedge y) \& 1)=y \wedge(x \wedge y)=x$.
- If $x \geq y$, then $y \wedge\left(\left(x^{\wedge} y\right) \& 0\right)=y \wedge 0=y$.

Merging Two Sorted Arrays

```
static void merge(int64_t * __restrict C,
    int64_t * __restrict A,
    int64_t * __restrict B,
    size_t na,
    size_t nb) {
    while (na > 0 && nb > 0) {
        if (*A <= *B) {
            *C++ = *A++; na--;
        } else {
            *C++ = *B++; nb--;
        }
    }
    while (na > 0) {
        *C++ = *A++;
        na--;
    }
    while (nb > 0) {
        *C++ = *B++;
        nb--;
    }
}
```


Merging Two Sorted Arrays

```
static void merge(int64_t * __restrict C,
```

static void merge(int64_t * __restrict C,
int64_t * __restrict A,
int64_t * __restrict A,
int64_t * __restrict B,
int64_t * __restrict B,
size_t na,
size_t na,
size_t nb) {
size_t nb) {
while (na > 0 \&\& nb > 0) {
while (na > 0 \&\& nb > 0) {
if (*A <= *B) {
if (*A <= *B) {
*C++ = *A++; na--;
*C++ = *A++; na--;
} else {
} else {
*C++ = *B++; nb--;
*C++ = *B++; nb--;
}
}
}
}
while (na > O) {
while (na > O) {
*C++ = *A++;
*C++ = *A++;
na--;
na--;
}
}
while (nb > 0) {
while (nb > 0) {
*C++ = *B++;
*C++ = *B++;
nb--;
nb--;
}}
}}

3	12	19	46
4	14	21	23

```

\section*{Branching}
```

 static void merge(long * __restrict C,
 long * __restrict A,
 long * __restrict B,
 size_t na,
 size_t nb) {
 while (na > 0 && nb > 0) {
 (3) if (*A <= *B) {
*C++ = *A++; na--;
} else {
*C++ = *B++; nb--;
}
}
(2) while (na > 0) {
*C++ = *A++;
na--;
}

1) while (nb > 0) {
*C++ = *B++;
nb--;
}
}
```

\section*{Branchless}
```

static void merge(int64_t *

```
\(\qquad\)
```

 restrict C,
 int64 t *
 int64_t *
    ```
```restrict A,
 size t na,
 size_t nb) {
 while (na > O && nb > 0) {
 long cmp = (*A <= *B);
 long min = *B ^ ((*B ^ *A) & (-cmp));
 *C++ = min;
 A += cmp; na -= cmp;
 B += !cmp; nb -= !cmp;
 }
 while (na > O) {
 *C++ = *A++;
 na--;
 }
 while (nb > 0) {
 *C++ = *B++;
 nb--;
 }
}
This optimization works well on some machines, but on modern machines using clang -03, the branchless version is usually slower than the branching version. \& Modern compilers can perform this optimization better than you can!
```


## Why Learn Bit Hacks?

## Why learn bit hacks if they don't perform?

- Because the compiler does them, and it will help to understand how the compiler is optimizing when you look at the assembly code.
- Because sometimes the compiler doesn't optimize, and you have to optimize your code by hand.
- Because many bit hacks for words extend naturally to bit, byte, and word hacks for vectors.
- Because these tricks arise in other domains, and so it pays to be educated about them.
- Because they're fun!


## Modular Addition

## Problem

```
Compute r = (x + y) mod n, assuming that 0 \leq x < n
and 0 \leq y < n.
```

$$
r=(x+y) \% n ; \quad \text { Division is expensive. }
$$

$$
\begin{aligned}
& z=x+y ; \\
& r=(z<n) ? z: z-n ;
\end{aligned}
$$

Unpredictable branch is expensive.

$$
\begin{aligned}
& z=x+y ; \\
& r=z-(n \&-(z>=n))
\end{aligned}
$$

Same trick as minimum.

## SPEED LIMIT

## Powers of 2

## Is an Integer a Power of 2?

## Problem

Is $x=2^{k}$ for some integer $k$ ?

$$
x==x \&-x
$$

## Example

$x$	00001000	00101000
$-x$	11111000	11011000
$x \&-x$	00001000	00001000
$x==x \&-x$	00000001	00000000

## Bug!

What if $\mathrm{x}=0$ ?

$$
(x!=0) \&(x==x \&-x)
$$

## Round up to a Power of 2

## Problem <br> Compute $2^{[\mid g n]}$. <br> Notation <br> $\lg \mathrm{n}=\log _{2} \mathrm{n}$

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```

Example

0010000001010000

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```


## Example

0010000001010000
0010000001001111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
\vdots
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```


## Example

0010000001010000
0010000001001111
0011000001101111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```


## Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```

Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```

Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```

Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
!
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```


## Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111

## Round up to a Power of 2

## Problem

Compute $2^{\lceil\lg n\rceil}$.

```
uint64_t n;
\vdots
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
```


## Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111
0100000000000000

## Round up to a Power of 2

## Problem

Compute $2^{[\lg n]}$.

```
uint64_t n;
\vdots
--n;
n |= n >> 1;
n | = n >> 2;
n | = n >> 4;
n | = n >> 8;
n | = n >> 16;
n | = n >> 32;
++n;
```


## Example

0010000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111
0100000000000000

Why decrement?
To handle the boundary case when n is a power of 2 .

## Round up to a Power of 2



## Least-Significant 1

## Problem

Compute the mask of the least-significant 1 in word x .

$$
r=x \&(-x) ;
$$

## Example

$x$	0010000001010000
$-x$	1101111110110000
$x \&(-x)$	0000000000010000

Why it works
The binary representation of $-x$ is $(\sim x)+1$.
Question
How do you find the index of the bit, i.e., $\lg r$ ?

## Count Trailing Zeros

## Problem

Compute $\lg \mathrm{x}$, where x is a power of 2 .

```
const uint64_t deBruijn = 0x022fdd63cc95386d;
const int convert[64] = {
 0, 1, 2, 53, 3, 7, 54, 27,
 4, 38, 41, 8, 34, 55, 48, 28,
 62, 5, 39, 46, 44, 42, 22, 9,
 24, 35, 59, 56, 49, 18, 29, 11,
 63, 52, 6, 26, 37, 40, 33, 47,
 61, 45, 43, 21, 23, 58, 17, 10,
 51, 25, 36, 32, 60, 20, 57, 16,
 50, 31, 19, 15, 30, 14, 13, 12
};
r = convert[(x * deBruijn) >> 58];
```


## Count Trailing 0's of a Power of 2

## Why it works

A deBruijn sequence $s$ of length $2^{k}$ is a cyclic $0-1$ sequence such that each of the $2^{k} 0-1$ strings of length $k$ occurs exactly once as a substring of $s$.

Example: $\mathrm{k}=3$

	00011101
0	00011101
1	00111010
2	01110100
3	11101000
4	11010001
5	10100011
6	01000111
7	10001110

000011101
100111010
201110100
311101000
411010001
510100011
601000111
710001110

## Count Trailing 0's of a Power of 2

Why it works
A deBruijn sequence $s$ of length $2^{\mathrm{k}}$ is a cyclic $0-1$ sequence such that each of the $2^{k} 0-1$ strings of length $k$ occurs exactly once as a substring of $s$.

Example: $\mathrm{k}=3$

	00011101
0	00011101
1	00111010
2	01110100
3	11101000
4	11010001
5	10100011
6	01000111
7	10001110

> const int convert[8]
> $=\{0,1,6,2,7,5,4,3\} ;$

## Count Trailing 0's of a Power of 2

Why it works
A deBruijn sequence $s$ of length $2^{\mathrm{k}}$ is a cyclic $0-1$ sequence such that each of the $2^{k} 0-1$ strings of length $k$ occurs exactly once as a substring of $s$.

Ob00011101*24 $\Rightarrow$ Ob11010000
Ob11010000 >> 5 = 6
convert[6] $\Rightarrow 4$
Hardware instruction int __builtin_ctz(int x)

Example: $\mathrm{k}=3$

	00011101
0	00011101
1	00111010
2	01110100
3	11101000
4	11010000
5	10100000
6	01000000
7	10000000

000011101
100111010
201110100
311101000
411010000
10100000
601000000
710000000

## SPEED LIMIT

## Popcount

## Population Count I

## Problem

Count the number of 1 bits in a word x .

```
for (r=0; x!=0; ++r) Repeatedly eliminate the
 x &= x - 1;
least-significant 1.
```


## Example

$x$	0010110111010000
$x-1$	0010110111001111
$x \&(x-1) ;$	0010110111000000

Issue
Fast if the popcount is small, but in the worst case, the running time is proportional to the number of bits in the word.

## Population Count II

## Table lookup

```
static const int count[256] =
{ 0, 1, 1, 2, 1, 2, 2, 3, 1, ..., 8 };
for (int r = 0; x != 0; x >>= 8)
 r += count[x & OxFF];
```

Performance depends on the word size. The cost of memory operations is a major bottleneck. Typical memory latencies:

- register: 1 cycle,
- L1-cache: 4 cycles,
- L2-cache: 10 cycles,
- L3-cache: 40 cycles,
- DRAM: 200 cycles.



## Population Count III

## Parallel divide-and-conquer

```
// Create masks
M5 = ~((-1) << 32); // 032132 Notation:
M4 = M5 ^ (M5 << 16); // (01616) 2}\quad\mp@subsup{X}{}{1/}=XX\cdots
M3 = M4 ^ (M4 << 8); // (0818)4
M2 = M3 ^ (M3 << 4); // (04144 8
M1 = M2 ^ (M2 << 2); // (O212)16
MO = M1 ^ (M1 << 1); // (01)32
// Compute popcount
x = ((x >> 1) & MO) + (x & MO);
x = ((x >> 2) & M1) + (x & M1);
x = ((x >> 4) + x) & M2;
x = ((x >> 8) + x) & M3;
x = ((x >> 16) + x) & M4;
x = ((x >> 32) + x) & M5;
```


## Population Count III

11000010010110111111010001111000 x

## Population Count III

$$
11000010010110111111010001111000 \begin{gathered}
x \\
(x>M 0 \\
(x>1) \& M 0
\end{gathered}
$$

## Population Count III

$$
\begin{aligned}
& 11000010010110111111010001111000 \text { x }
\end{aligned}
$$

## Population Count III



## Population Count III



## Population Count III

	11			01	0				10								O	,			00		x
	1		0	0	0	0			0		1			1	1	0	0	1			0	0	x\&MO
+	1		0	0	1	1	0	0	1		1	1		1	0	0	0	0	1		1	0	( $\mathrm{x} \gg 1$ )\&MO
		00	0		01			01		1	0		10	0		00			10			00	x\&M1
+		10	0		00			01		0			10	0		01			01			01	( $x \gg 2$ )\&M1
	$00100001001000110100000100110001 \quad \begin{gathered} \text { x\&M2 } \\ (x \gg 4) \& M 2 \end{gathered}$																						

## Population Count III

	11		00	01	10		10													10			x
	1		0	0		0	1		0	0	1	,	1		1		0	1		0	0		x\&MO
+	1		0	0	1	1	0	0	1		1	1	1		0		0	0	1	1	1	0	( $\mathrm{x} \gg 1$ )\&MO
		00			01			01		1	0		10	0		00			10				x\&M1
+		10	0		00			01		0			10			01			01		0		( $x \gg 2$ )\&M1
				000					00	01					00	01					0		x\&M2
+				001	10				00	1					01	00					1		( $\mathrm{x} \gg 4$ ) \& M 2
	00000011						00000011					00000101						00		01			

## Population Count III



## Population Count III



## Population Count III



## Population Count III



## Population Count III

## Parallel divide-and-conquer

```
// Create masks
M5 = ~((-1) << 32); // O32132
M4 = M5 ^ (M5 << 16); // (0161'6)}\mp@subsup{}{}{2
M3 = M4 ^ (M4 << 8); // (0818)4
M2 = M3 ^ (M3 << 4); // (O4 (4) 8
M1 = M2 ^ (M2 << 2); // (O212)16
M0 = M1 ^ (M1 << 1); // (01)32
// Compute popcount
x = ((x >> 1) & M0) + (x & M0);
x = ((x >> 2) & M1) + (x & M1);
x = ((x >> 4) + x) & M2;
x = ((x >> 8) + x) & M3;
x = ((x >> 16) + x) & M4;
x = ((x >> 32) + x) & M5;
```


## Popcount Instructions

Most modern machines provide popcount instructions, which operate much faster than anything you can code yourself. You can access them via compiler intrinsics, e.g., in clang: int __builtin_popcount (unsigned int x);

Warning: With some compilers, you may need to enable certain switches to access built-in functions, and your code may be less portable.

## Exercise

Compute the log base 2 of a power of 2 quickly using a popcount instruction.

## SPEED LIMIT

Final Remarks

## Further Reading

- Sean Eron Anderson, "Bit twiddling hacks," http://graphics.stanford.edu/~seander/bithacks.html, 2009.
- Donald E. Knuth, The Art of Computer Programming, Volume 4A, Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.1.3.
- http://chessprogramming.wikispaces.com/
- Henry S. Warren, Hacker's Delight, Addison-Wesley, 2003.


## And remember to...

## Support Computer Science: Every Little Bit Counts!

